BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

54 related articles for article (PubMed ID: 35569863)

  • 1. Bio-functionalization of microfluidic platforms made of thermoplastic materials: A review.
    Shakeri A; Jarad NA; Khan S; F Didar T
    Anal Chim Acta; 2022 May; 1209():339283. PubMed ID: 35569863
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PDMS Bonding Technologies for Microfluidic Applications: A Review.
    Borók A; Laboda K; Bonyár A
    Biosensors (Basel); 2021 Aug; 11(8):. PubMed ID: 34436094
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface modification of droplet polymeric microfluidic devices for the stable and continuous generation of aqueous droplets.
    Subramanian B; Kim N; Lee W; Spivak DA; Nikitopoulos DE; McCarley RL; Soper SA
    Langmuir; 2011 Jun; 27(12):7949-57. PubMed ID: 21608975
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrokinetic identification of ribonucleotide monophosphates (rNMPs) using thermoplastic nanochannels.
    Amarasekara CA; Rathnayaka C; Athapattu US; Zhang L; Choi J; Park S; Nagel AC; Soper SA
    J Chromatogr A; 2021 Feb; 1638():461892. PubMed ID: 33477027
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Machinability of the Thermoplastic Polymers: PEEK, PI, and PMMA.
    Yan Y; Mao Y; Li B; Zhou P
    Polymers (Basel); 2020 Dec; 13(1):. PubMed ID: 33375347
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection and identification of single ribonucleotide monophosphates using a dual in-plane nanopore sensor made in a thermoplastic
    Rathnayaka C; Chandrosoma IA; Choi J; Childers K; Chibuike M; Akabirov K; Shiri F; Hall AR; Lee M; McKinney C; Verber M; Park S; Soper SA
    Lab Chip; 2024 May; 24(10):2721-2735. PubMed ID: 38656267
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Advances in microfluidic devices made from thermoplastics used in cell biology and analyses.
    Gencturk E; Mutlu S; Ulgen KO
    Biomicrofluidics; 2017 Sep; 11(5):051502. PubMed ID: 29152025
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aldehyde-functional polycarbonates as reactive platforms.
    Heo GS; Cho S; Wooley KL
    Polym Chem; 2014 Jun; 5(11):3555-3558. PubMed ID: 25580163
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Comprehensive Review of Organ-on-a-Chip Technology and Its Applications.
    Farhang Doost N; Srivastava SK
    Biosensors (Basel); 2024 May; 14(5):. PubMed ID: 38785699
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aryl-diazonium salts offer a rapid and cost-efficient method to functionalize plastic microfluidic devices for increased immunoaffinity capture.
    Rabe DC; Ho U; Choudhury A; Wallace J; Luciani E; Lee D; Flynn E; Stott SL
    Adv Mater Technol; 2023 Aug; 8(16):. PubMed ID: 38283881
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Novel Milli-fluidic Liver Tissue Chip with Continuous Recirculation for Predictive Pharmacokinetics Applications.
    Rajan SAP; Sherfey J; Ohri S; Nichols L; Smith JT; Parekh P; Kadar EP; Clark F; George BT; Gregory L; Tess D; Gosset JR; Liras J; Geishecker E; Obach RS; Cirit M
    AAPS J; 2023 Oct; 25(6):102. PubMed ID: 37891356
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering Organ-on-a-Chip Systems for Vascular Diseases.
    Shakeri A; Wang Y; Zhao Y; Landau S; Perera K; Lee J; Radisic M
    Arterioscler Thromb Vasc Biol; 2023 Dec; 43(12):2241-2255. PubMed ID: 37823265
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improving physio-mechanical and biological properties of 3D-printed PLA scaffolds via in-situ argon cold plasma treatment.
    Zarei M; Sayedain SS; Askarinya A; Sabbaghi M; Alizadeh R
    Sci Rep; 2023 Aug; 13(1):14120. PubMed ID: 37644122
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Elastomeric Polyesters in Cardiovascular Tissue Engineering and Organs-on-a-Chip.
    Okhovatian S; Shakeri A; Davenport Huyer L; Radisic M
    Biomacromolecules; 2023 Nov; 24(11):4511-4531. PubMed ID: 37639715
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High Sensitivity Extended Nano-Coulter Counter for Detection of Viral Particles and Extracellular Vesicles.
    Vaidyanathan S; Wijerathne H; Gamage SST; Shiri F; Zhao Z; Choi J; Park S; Witek MA; McKinney C; Verber M; Hall AR; Childers K; McNickle T; Mog S; Yeh E; Godwin AK; Soper SA
    Anal Chem; 2023 Jul; 95(26):9892-9900. PubMed ID: 37336762
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Breaking the clean room barrier: exploring low-cost alternatives for microfluidic devices.
    Rodríguez CF; Andrade-Pérez V; Vargas MC; Mantilla-Orozco A; Osma JF; Reyes LH; Cruz JC
    Front Bioeng Biotechnol; 2023; 11():1176557. PubMed ID: 37180035
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent Trends of Microfluidics in Food Science and Technology: Fabrications and Applications.
    Mu R; Bu N; Pang J; Wang L; Zhang Y
    Foods; 2022 Nov; 11(22):. PubMed ID: 36429319
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface Modification of Polymethylmethacrylate (PMMA) by Ultraviolet (UV) Irradiation and IPA Rinsing.
    Bae G; Park T; Song IH
    Micromachines (Basel); 2022 Nov; 13(11):. PubMed ID: 36422382
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Fabrication and Bonding of Thermoplastic Microfluidics: A Review.
    Shakeri A; Khan S; Jarad NA; Didar TF
    Materials (Basel); 2022 Sep; 15(18):. PubMed ID: 36143790
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contamination and carryover free handling of complex fluids using lubricant-infused pipette tips.
    Shakeri A; Yousefi H; Jarad NA; Kullab S; Al-Mfarej D; Rottman M; Didar TF
    Sci Rep; 2022 Aug; 12(1):14486. PubMed ID: 36008518
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.