These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 35570462)

  • 21. Systematic microscopical analysis reveals obligate synergy between extracellular matrix components during
    Porter M; Davidson FA; MacPhee CE; Stanley-Wall NR
    Biofilm; 2022 Dec; 4():100082. PubMed ID: 36148433
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Calcium Prevents Biofilm Dispersion in Bacillus subtilis.
    Nishikawa M; Kobayashi K
    J Bacteriol; 2021 Jun; 203(14):e0011421. PubMed ID: 33927049
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biofilm-associated toxin and extracellular protease cooperatively suppress competitors in Bacillus subtilis biofilms.
    Kobayashi K; Ikemoto Y
    PLoS Genet; 2019 Oct; 15(10):e1008232. PubMed ID: 31622331
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Analysis of biofilm expansion rate of
    Wu J; Li X; Kong R; Wang J; Wang X
    Can J Microbiol; 2023 Dec; 69(12):479-487. PubMed ID: 37379574
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Regulation of Biofilm Aging and Dispersal in
    Bartolini M; Cogliati S; Vileta D; Bauman C; Rateni L; Leñini C; Argañaraz F; Francisco M; Villalba JM; Steil L; Völker U; Grau R
    J Bacteriol; 2019 Jan; 201(2):. PubMed ID: 30396900
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Modeling cell-death patterning during biofilm formation.
    Ghosh P; Ben-Jacob E; Levine H
    Phys Biol; 2013 Dec; 10(6):066006. PubMed ID: 24275528
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A brick in the wall: Discovering a novel mineral component of the biofilm extracellular matrix.
    Keren-Paz A; Kolodkin-Gal I
    N Biotechnol; 2020 May; 56():9-15. PubMed ID: 31706043
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bacillus subtilis Modulates Its Usage of Biofilm-Bound Iron in Response to Environmental Iron Availability.
    Rizzi A; Leroux J; Charron-Lamoureux V; Roy S; Beauregard PB; Bellenger JP
    Appl Environ Microbiol; 2020 Oct; 86(22):. PubMed ID: 32917750
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The formation mechanism of
    Li X; Kong R; Wang J; Wu J; He K; Wang X
    Can J Microbiol; 2023 Jul; 69(7):251-261. PubMed ID: 36893426
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Continuous versus Arrested Spreading of Biofilms at Solid-Gas Interfaces: The Role of Surface Forces.
    Trinschek S; John K; Lecuyer S; Thiele U
    Phys Rev Lett; 2017 Aug; 119(7):078003. PubMed ID: 28949685
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Morphologies and phenotypes in Bacillus subtilis biofilms.
    Wang X; Meng S; Han J
    J Microbiol; 2017 Aug; 55(8):619-627. PubMed ID: 28674970
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Inhibition of Cell Differentiation in Bacillus subtilis by Pseudomonas protegens.
    Powers MJ; Sanabria-Valentín E; Bowers AA; Shank EA
    J Bacteriol; 2015 Jul; 197(13):2129-2138. PubMed ID: 25825426
    [TBL] [Abstract][Full Text] [Related]  

  • 33. New mechanistic insights into the motile-to-sessile switch in various bacteria with particular emphasis on Bacillus subtilis and Pseudomonas aeruginosa: a review.
    Sadiq FA; Flint S; Li Y; Liu T; Lei Y; Sakandar HA; He G
    Biofouling; 2017 Apr; 33(4):306-326. PubMed ID: 28347177
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Antimicrobial peptide AMPNT-6 from Bacillus subtilis inhibits biofilm formation by Shewanella putrefaciens and disrupts its preformed biofilms on both abiotic and shrimp shell surfaces.
    Deng Q; Pu Y; Sun L; Wang Y; Liu Y; Wang R; Liao J; Xu D; Liu Y; Ye R; Fang Z; Gooneratne R
    Food Res Int; 2017 Dec; 102():8-13. PubMed ID: 29196015
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cell differentiation and motion determine the Bacillus subtilis biofilm morphological evolution under the competitive growth.
    Wang X; Zhang D; Dong F; Liu S; Zhang J; Zhao H
    J Basic Microbiol; 2021 May; 61(5):396-405. PubMed ID: 33682160
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The spatial architecture of Bacillus subtilis biofilms deciphered using a surface-associated model and in situ imaging.
    Bridier A; Le Coq D; Dubois-Brissonnet F; Thomas V; Aymerich S; Briandet R
    PLoS One; 2011 Jan; 6(1):e16177. PubMed ID: 21267464
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Iron Homeostasis in Bacillus subtilis Requires Siderophore Production and Biofilm Formation.
    Rizzi A; Roy S; Bellenger JP; Beauregard PB
    Appl Environ Microbiol; 2019 Feb; 85(3):. PubMed ID: 30446551
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Diverse LXG toxin and antitoxin systems specifically mediate intraspecies competition in Bacillus subtilis biofilms.
    Kobayashi K
    PLoS Genet; 2021 Jul; 17(7):e1009682. PubMed ID: 34280190
    [TBL] [Abstract][Full Text] [Related]  

  • 39. BslA is a self-assembling bacterial hydrophobin that coats the Bacillus subtilis biofilm.
    Hobley L; Ostrowski A; Rao FV; Bromley KM; Porter M; Prescott AR; MacPhee CE; van Aalten DM; Stanley-Wall NR
    Proc Natl Acad Sci U S A; 2013 Aug; 110(33):13600-5. PubMed ID: 23904481
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Galactose metabolism plays a crucial role in biofilm formation by Bacillus subtilis.
    Chai Y; Beauregard PB; Vlamakis H; Losick R; Kolter R
    mBio; 2012; 3(4):e00184-12. PubMed ID: 22893383
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.