BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 35570564)

  • 1. The Role of Heat Shock Protein 40 in Carcinogenesis and Biology of Colorectal Cancer.
    Asgharzadeh F; Moradi-Marjaneh R; Marjaneh MM
    Curr Pharm Des; 2022; 28(18):1457-1465. PubMed ID: 35570564
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The chaperone proteins HSP70, HSP40/DnaJ and GRP78/BiP suppress misfolding and formation of β-sheet-containing aggregates by human amylin: a potential role for defective chaperone biology in Type 2 diabetes.
    Chien V; Aitken JF; Zhang S; Buchanan CM; Hickey A; Brittain T; Cooper GJ; Loomes KM
    Biochem J; 2010 Nov; 432(1):113-21. PubMed ID: 20735358
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural insights into the chaperone activity of the 40-kDa heat shock protein DnaJ: binding and remodeling of a native substrate.
    Cuéllar J; Perales-Calvo J; Muga A; Valpuesta JM; Moro F
    J Biol Chem; 2013 May; 288(21):15065-74. PubMed ID: 23580641
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The diversity of the DnaJ/Hsp40 family, the crucial partners for Hsp70 chaperones.
    Qiu XB; Shao YM; Miao S; Wang L
    Cell Mol Life Sci; 2006 Nov; 63(22):2560-70. PubMed ID: 16952052
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synergistic binding of DnaJ and DnaK chaperones to heat shock transcription factor σ32 ensures its characteristic high metabolic instability: implications for heat shock protein 70 (Hsp70)-Hsp40 mode of function.
    Suzuki H; Ikeda A; Tsuchimoto S; Adachi K; Noguchi A; Fukumori Y; Kanemori M
    J Biol Chem; 2012 Jun; 287(23):19275-83. PubMed ID: 22496372
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Role of Heat Shock Protein 27 in Carcinogenesis and Treatment of Colorectal Cancer.
    Asgharzadeh F; Moradi-Marjaneh R; Marjaneh MM
    Curr Pharm Des; 2022; 28(32):2677-2685. PubMed ID: 35490324
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DnaJ-promoted binding of DnaK to multiple sites on σ32 in the presence of ATP.
    Noguchi A; Ikeda A; Mezaki M; Fukumori Y; Kanemori M
    J Bacteriol; 2014 May; 196(9):1694-703. PubMed ID: 24532774
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel inhibitors of heat shock protein Hsp70-mediated luciferase refolding that bind to DnaJ.
    Cassel JA; Ilyin S; McDonnell ME; Reitz AB
    Bioorg Med Chem; 2012 Jun; 20(11):3609-14. PubMed ID: 22546203
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A functional DnaK dimer is essential for the efficient interaction with Hsp40 heat shock protein.
    Sarbeng EB; Liu Q; Tian X; Yang J; Li H; Wong JL; Zhou L; Liu Q
    J Biol Chem; 2015 Apr; 290(14):8849-62. PubMed ID: 25635056
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel role of HSP40/DNAJ in the regulation of HIV-1 replication.
    Urano E; Morikawa Y; Komano J
    J Acquir Immune Defic Syndr; 2013 Oct; 64(2):154-62. PubMed ID: 24047968
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DNAJ proteins and protein aggregation diseases.
    Kakkar V; Prins LC; Kampinga HH
    Curr Top Med Chem; 2012; 12(22):2479-90. PubMed ID: 23339302
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Specification of Hsp70 Function by Hsp40 Co-chaperones.
    Cyr DM; Ramos CH
    Subcell Biochem; 2023; 101():127-139. PubMed ID: 36520305
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glutathionylation of the Bacterial Hsp70 Chaperone DnaK Provides a Link between Oxidative Stress and the Heat Shock Response.
    Zhang H; Yang J; Wu S; Gong W; Chen C; Perrett S
    J Biol Chem; 2016 Mar; 291(13):6967-81. PubMed ID: 26823468
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Suppression of polyglutamine protein toxicity by co-expression of a heat-shock protein 40 and a heat-shock protein 110.
    Kuo Y; Ren S; Lao U; Edgar BA; Wang T
    Cell Death Dis; 2013 Oct; 4(10):e833. PubMed ID: 24091676
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Human DNAJ in cancer and stem cells.
    Sterrenberg JN; Blatch GL; Edkins AL
    Cancer Lett; 2011 Dec; 312(2):129-42. PubMed ID: 21925790
    [TBL] [Abstract][Full Text] [Related]  

  • 16. KNK437 restricts the growth and metastasis of colorectal cancer via targeting DNAJA1/CDC45 axis.
    Yang S; Ren X; Liang Y; Yan Y; Zhou Y; Hu J; Wang Z; Song F; Wang F; Liao W; Liao W; Ding Y; Liang L
    Oncogene; 2020 Jan; 39(2):249-261. PubMed ID: 31477839
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Edwardsiella tarda DnaJ is a virulence-associated molecular chaperone with immunoprotective potential.
    Dang W; Zhang M; Sun L
    Fish Shellfish Immunol; 2011 Aug; 31(2):182-8. PubMed ID: 21601637
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Astonishing Large Family of HSP40/DnaJ Proteins Existing in
    Solana JC; Bernardo L; Moreno J; Aguado B; Requena JM
    Genes (Basel); 2022 Apr; 13(5):. PubMed ID: 35627127
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Progression of colorectal cancers correlates with overexpression and loss of polarization of expression of the htid-1 tumor suppressor.
    Kurzik-Dumke U; Hörner M; Czaja J; Nicotra MR; Simiantonaki N; Koslowski M; Natali PG
    Int J Mol Med; 2008 Jan; 21(1):19-31. PubMed ID: 18097612
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling Hsp70/Hsp40 interaction by multi-scale molecular simulations and coevolutionary sequence analysis.
    Malinverni D; Jost Lopez A; De Los Rios P; Hummer G; Barducci A
    Elife; 2017 May; 6():. PubMed ID: 28498104
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.