These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 35570783)

  • 1. Synthesis of a Bottlebrush Polymer Gel with a Uniform and Controlled Network Structure.
    Nakagawa S; Yoshie N
    ACS Macro Lett; 2021 Feb; 10(2):186-191. PubMed ID: 35570783
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Linking microscopic structural changes and macroscopic mechanical responses in a near-ideal bottlebrush elastomer under uniaxial deformation.
    Nakagawa S; Yoshie N
    Soft Matter; 2022 Jun; 18(24):4527-4535. PubMed ID: 35670222
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A UV-Cleavable Bottlebrush Polymer with o-Nitrobenzyl-Linked Side Chains.
    Zhu W; Zhang L; Chen Y; Zhang K
    Macromol Rapid Commun; 2017 Jun; 38(11):. PubMed ID: 28321947
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid Processing of Bottlebrush Coatings through UV-Induced Cross-Linking.
    Mei H; Mah AH; Hu Z; Li Y; Terlier T; Stein GE; Verduzco R
    ACS Macro Lett; 2020 Aug; 9(8):1135-1142. PubMed ID: 35653204
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Simple and Versatile Method for the Construction of Nearly Ideal Polymer Networks.
    Huang X; Nakagawa S; Li X; Shibayama M; Yoshie N
    Angew Chem Int Ed Engl; 2020 Jun; 59(24):9646-9652. PubMed ID: 32187427
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiarm Star-Crosslinked Hydrogel: Polymer Network with Thermoresponsive Free-End Chains Densely Connected to Crosslinking Points.
    Ida S; Toda S; Oyama M; Takeshita H; Kanaoka S
    Macromol Rapid Commun; 2021 Apr; 42(8):e2000558. PubMed ID: 33244811
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Soft Elastomers via Introduction of Poly(butyl acrylate) "Diluent" to Poly(hydroxyethyl acrylate)-Based Gel Networks.
    Mpoukouvalas A; Li W; Graf R; Koynov K; Matyjaszewski K
    ACS Macro Lett; 2013 Jan; 2(1):23-26. PubMed ID: 35581835
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comparative study of thermodynamic, conformational, and structural properties of bottlebrush with star and ring polymer melts.
    Chremos A; Douglas JF
    J Chem Phys; 2018 Jul; 149(4):044904. PubMed ID: 30068167
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mesoporous Polymer Frameworks from End-Reactive Bottlebrush Copolymers.
    Altay E; Nykypanchuk D; Rzayev J
    ACS Nano; 2017 Aug; 11(8):8207-8214. PubMed ID: 28782926
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alkyne-Palladium(II)-Catalyzed Living Polymerization of Isocyanides: An Exploration of Diverse Structures and Functions.
    Liu N; Zhou L; Wu ZQ
    Acc Chem Res; 2021 Oct; 54(20):3953-3967. PubMed ID: 34601864
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bottlebrush Polymer Excipients Enhance Drug Solubility: Influence of End-Group Hydrophilicity and Thermoresponsiveness.
    Ohnsorg ML; Prendergast PC; Robinson LL; Bockman MR; Bates FS; Reineke TM
    ACS Macro Lett; 2021 Mar; 10(3):375-381. PubMed ID: 35549060
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two-Step Divergent Synthesis of Monodisperse and Ultra-Long Bottlebrush Polymers from an Easily Purifiable ROMP Monomer.
    Yamauchi Y; Horimoto NN; Yamada K; Matsushita Y; Takeuchi M; Ishida Y
    Angew Chem Int Ed Engl; 2021 Jan; 60(3):1528-1534. PubMed ID: 33058482
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis and arm dissociation in molecular stars with a spoked wheel core and bottlebrush arms.
    Burdyńska J; Li Y; Aggarwal AV; Höger S; Sheiko SS; Matyjaszewski K
    J Am Chem Soc; 2014 Sep; 136(36):12762-70. PubMed ID: 25133316
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reversibly Cross-linkable Bottlebrush Polymers as Pressure-Sensitive Adhesives.
    Arrington KJ; Radzinski SC; Drummey KJ; Long TE; Matson JB
    ACS Appl Mater Interfaces; 2018 Aug; 10(31):26662-26668. PubMed ID: 30062885
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis of bottlebrush polystyrenes with uniform, alternating, and gradient distributions of brushes via living anionic polymerization and hydrosilylation.
    Ma H; Wang Q; Sang W; Han L; Liu P; Chen J; Li Y; Wang Y
    Macromol Rapid Commun; 2015 Apr; 36(8):726-32. PubMed ID: 25689411
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mikto-Brush-Arm Star Polymers via Cross-Linking of Dissimilar Bottlebrushes: Synthesis and Solution Morphologies.
    Shibuya Y; Nguyen HV; Johnson JA
    ACS Macro Lett; 2017 Sep; 6(9):963-968. PubMed ID: 35650899
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unraveling the Correlations between Conformation, Lubrication, and Chemical Stability of Bottlebrush Polymers at Interfaces.
    Faivre J; Shrestha BR; Xie G; Delair T; David L; Matyjaszewski K; Banquy X
    Biomacromolecules; 2017 Dec; 18(12):4002-4010. PubMed ID: 28960970
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Non-Tacky Fluorinated and Elastomeric STEM Networks.
    Cuthbert J; Martinez MR; Sun M; Flum J; Li L; Olszewski M; Wang Z; Kowalewski T; Matyjaszewski K
    Macromol Rapid Commun; 2019 May; 40(10):e1800876. PubMed ID: 30740812
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermoresponsive PNIPAAM bottlebrush polymers with tailored side-chain length and end-group structure.
    Li X; ShamsiJazeyi H; Pesek SL; Agrawal A; Hammouda B; Verduzco R
    Soft Matter; 2014 Mar; 10(12):2008-15. PubMed ID: 24652160
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Uniform PEO star polymers synthesized in water via free radical polymerization or atom transfer radical polymerization.
    Li W; Matyjaszewski K
    Macromol Rapid Commun; 2011 Jan; 32(1):74-81. PubMed ID: 21432973
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.