These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 35571431)

  • 21. Comparison of genome-wide gene expression in suture- and alkali burn-induced murine corneal neovascularization.
    Jia C; Zhu W; Ren S; Xi H; Li S; Wang Y
    Mol Vis; 2011; 17():2386-99. PubMed ID: 21921991
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Daphnetin inhibits corneal inflammation and neovascularization on a mouse model of corneal alkali burn.
    Yang T; Wang X; Guo L; Zheng F; Meng C; Zheng Y; Liu G
    Int Immunopharmacol; 2022 Feb; 103():108434. PubMed ID: 34920334
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Critical Role of IP-10 on Reducing Experimental Corneal Neovascularization.
    Liu G; Zhang W; Xiao Y; Lu P
    Curr Eye Res; 2015 Sep; 40(9):891-901. PubMed ID: 25309995
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Efficacy of the nucleotide-binding oligomerzation domain 1 inhibitor Nodinhibit-1 on corneal alkali burns in rats.
    Huang X; Han Y; Shao Y; Yi JL
    Int J Ophthalmol; 2015; 8(5):860-5. PubMed ID: 26558192
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The long-term effect of tacrolimus on alkali burn-induced corneal neovascularization and inflammation surpasses that of anti-vascular endothelial growth factor.
    Chen L; Zhong J; Li S; Li W; Wang B; Deng Y; Yuan J
    Drug Des Devel Ther; 2018; 12():2959-2969. PubMed ID: 30254425
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Alkali burn to the eye: protection using TNF-α inhibition.
    Cade F; Paschalis EI; Regatieri CV; Vavvas DG; Dana R; Dohlman CH
    Cornea; 2014 Apr; 33(4):382-9. PubMed ID: 24488127
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Protective roles of the TIR/BB-loop mimetic AS-1 in alkali-induced corneal neovascularization by inhibiting ERK phosphorylation.
    Liu Y; Shu Y; Yin L; Xie T; Zou J; Zhan P; Wang Y; Wei T; Zhu L; Yang X; Wang W; Cai J; Li Y; Yao Y; Wang X
    Exp Eye Res; 2021 Jun; 207():108568. PubMed ID: 33839112
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An ophthalmic solution of a peroxisome proliferator-activated receptor gamma agonist prevents corneal inflammation in a rat alkali burn model.
    Uchiyama M; Shimizu A; Masuda Y; Nagasaka S; Fukuda Y; Takahashi H
    Mol Vis; 2013; 19():2135-50. PubMed ID: 24194635
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Opposite roles of CCR2 and CX3CR1 macrophages in alkali-induced corneal neovascularization.
    Lu P; Li L; Liu G; van Rooijen N; Mukaida N; Zhang X
    Cornea; 2009 Jun; 28(5):562-9. PubMed ID: 19421039
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of metalloproteinase inhibitor on corneal cytokine expression after alkali injury.
    Sotozono C; He J; Tei M; Honma Y; Kinoshita S
    Invest Ophthalmol Vis Sci; 1999 Sep; 40(10):2430-4. PubMed ID: 10476814
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Anti-angiogenesis effect of the novel anti-inflammatory and pro-resolving lipid mediators.
    Jin Y; Arita M; Zhang Q; Saban DR; Chauhan SK; Chiang N; Serhan CN; Dana R
    Invest Ophthalmol Vis Sci; 2009 Oct; 50(10):4743-52. PubMed ID: 19407006
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Pro-inflammatory role of NLRP3 inflammasome in experimental sterile corneal inflammation.
    Shimizu H; Sakimoto T; Yamagami S
    Sci Rep; 2019 Jul; 9(1):9596. PubMed ID: 31270454
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Transient downregulation of microRNA-206 protects alkali burn injury in mouse cornea by regulating connexin 43.
    Li X; Zhou H; Tang W; Guo Q; Zhang Y
    Int J Clin Exp Pathol; 2015; 8(3):2719-27. PubMed ID: 26045777
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Inhibition of NLRP3 Inflammasome Pathway by Butyrate Improves Corneal Wound Healing in Corneal Alkali Burn.
    Bian F; Xiao Y; Zaheer M; Volpe EA; Pflugfelder SC; Li DQ; de Paiva CS
    Int J Mol Sci; 2017 Mar; 18(3):. PubMed ID: 28273882
    [TBL] [Abstract][Full Text] [Related]  

  • 35. PPARα Agonist Suppresses Inflammation after Corneal Alkali Burn by Suppressing Proinflammatory Cytokines, MCP-1, and Nuclear Translocation of NF-κB.
    Nakano Y; Uchiyama M; Arima T; Nagasaka S; Igarashi T; Shimizu A; Takahashi H
    Molecules; 2018 Dec; 24(1):. PubMed ID: 30597991
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of nicotine on corneal wound healing following acute alkali burn.
    Kim JW; Lim CW; Kim B
    PLoS One; 2017; 12(6):e0179982. PubMed ID: 28644870
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Suppression of the caspase-1/GSDMD-mediated pyroptotic signaling pathway through dexamethasone alleviates corneal alkali injuries.
    Tan Y; Zhang M; Pan Y; Feng H; Xie L
    Exp Eye Res; 2022 Jan; 214():108858. PubMed ID: 34822855
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The Effect of Interleukin 38 on Inflammation-induced Corneal Neovascularization.
    Zhu J; Zhang J; Wang Y; Chen J; Li X; Liu X; Kong E; Su SB; Zhang Z
    Curr Mol Med; 2019; 19(8):589-596. PubMed ID: 31244436
    [TBL] [Abstract][Full Text] [Related]  

  • 39.
    Estrella-Mendoza MF; Jiménez-Gómez F; López-Ornelas A; Pérez-Gutiérrez RM; Flores-Estrada J
    Nutrients; 2019 May; 11(5):. PubMed ID: 31137826
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Inhibitory effects of
    Wang YL; Gao GP; Wang YQ; Wu Y; Peng ZY; Zhou Q
    Mol Vis; 2017; 23():286-295. PubMed ID: 28479848
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.