These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 35571534)

  • 1. Defect Etching in Carbon Nanotube Walls for Porous Carbon Nanoreactors: Implications for CO
    Astle MA; Weilhard A; Rance GA; LeMercier TM; Stoppiello CT; Norman LT; Fernandes JA; Khlobystov AN
    ACS Appl Nano Mater; 2022 Feb; 5(2):2075-2086. PubMed ID: 35571534
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluating the effects of carbon nanoreactor diameter and internal structure on the pathways of the catalytic hydrosilylation reaction.
    Solomonsz WA; Rance GA; Khlobystov AN
    Small; 2014 May; 10(9):1866-72. PubMed ID: 24914447
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Competitive hydrosilylation in carbon nanoreactors: probing the effect of nanoscale confinement on selectivity.
    Solomonsz WA; Rance GA; Harris BJ; Khlobystov AN
    Nanoscale; 2013 Dec; 5(24):12200-5. PubMed ID: 24131987
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cerium Oxide Nanoparticles Inside Carbon Nanoreactors for Selective Allylic Oxidation of Cyclohexene.
    Agasti N; Astle MA; Rance GA; Alves Fernandes J; Dupont J; Khlobystov AN
    Nano Lett; 2020 Feb; 20(2):1161-1171. PubMed ID: 31975606
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient fabrication of single-wall carbon nanotube nanoreactors by defect-induced cutting.
    Zheng X; Zhang Z; Zhou G; Zou M; Zhang F; Hou PX; Shi C; Cheng HM; Wang M; Liu C
    Nanoscale; 2023 Feb; 15(8):3931-3939. PubMed ID: 36723243
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controlling the regioselectivity of the hydrosilylation reaction in carbon nanoreactors.
    Solomonsz WA; Rance GA; Suyetin M; La Torre A; Bichoutskaia E; Khlobystov AN
    Chemistry; 2012 Oct; 18(41):13180-7. PubMed ID: 22969044
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Natural aluminosilicate nanotubes loaded with RuCo as nanoreactors for Fischer-Tropsch synthesis.
    Mazurova K; Glotov A; Kotelev M; Eliseev O; Gushchin P; Rubtsova M; Vutolkina A; Kazantsev R; Vinokurov V; Stavitskaya A
    Sci Technol Adv Mater; 2022; 23(1):17-30. PubMed ID: 35069010
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemical reactions confined within carbon nanotubes.
    Miners SA; Rance GA; Khlobystov AN
    Chem Soc Rev; 2016 Aug; 45(17):4727-46. PubMed ID: 27301444
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemical reactions at the graphitic step-edge: changes in product distribution of catalytic reactions as a tool to explore the environment within carbon nanoreactors.
    Lebedeva MA; Chamberlain TW; Thomas A; Thomas BE; Stoppiello CT; Volkova E; Suyetin M; Khlobystov AN
    Nanoscale; 2016 Jun; 8(22):11727-37. PubMed ID: 27222094
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design and Properties of Confined Nanocatalysts by Atomic Layer Deposition.
    Gao Z; Qin Y
    Acc Chem Res; 2017 Sep; 50(9):2309-2316. PubMed ID: 28787132
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catalytic nanoreactors in continuous flow: hydrogenation inside single-walled carbon nanotubes using supercritical CO2.
    Chamberlain TW; Earley JH; Anderson DP; Khlobystov AN; Bourne RA
    Chem Commun (Camb); 2014 May; 50(40):5200-2. PubMed ID: 24496498
    [TBL] [Abstract][Full Text] [Related]  

  • 12. One-step chemical vapor deposition synthesis and supercapacitor performance of nitrogen-doped porous carbon-carbon nanotube hybrids.
    Lobiak EV; Bulusheva LG; Fedorovskaya EO; Shubin YV; Plyusnin PE; Lonchambon P; Senkovskiy BV; Ismagilov ZR; Flahaut E; Okotrub AV
    Beilstein J Nanotechnol; 2017; 8():2669-2679. PubMed ID: 29354339
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced CO
    Luo L; Qu Y; Liu F; Yang C; Zhao T
    J Colloid Interface Sci; 2025 Jan; 678(Pt A):1109-1120. PubMed ID: 39243477
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pt nanoparticles confined in hollow silica nanoreactors as highly efficient catalysts for semihydrogenations of alkynes at atmospheric H
    Xu C; Li K; Yu H; Liu M; Zhou S
    J Colloid Interface Sci; 2023 Jan; 630(Pt A):334-342. PubMed ID: 36252509
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Understanding the Role of Inter- and Intramolecular Promoters in Electro- and Photochemical CO
    Fujita E; Grills DC; Manbeck GF; Polyansky DE
    Acc Chem Res; 2022 Mar; 55(5):616-628. PubMed ID: 35133133
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selective growth of palladium and titanium dioxide nanostructures inside carbon nanotube membranes.
    Hevia S; Homm P; Cortes A; Núñez V; Contreras C; Vera J; Segura R
    Nanoscale Res Lett; 2012 Jun; 7(1):342. PubMed ID: 22731888
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Size-selective yolk-shell nanoreactors with nanometer-thin porous polymer shells.
    Jia Y; Shmakov SN; Register P; Pinkhassik E
    Chemistry; 2015 Sep; 21(36):12709-14. PubMed ID: 26223572
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effects of confinement inside carbon nanotubes on catalysis.
    Pan X; Bao X
    Acc Chem Res; 2011 Aug; 44(8):553-62. PubMed ID: 21707038
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Porous-Carbon-Confined Formation of Monodisperse Iron Nanoparticle Yolks toward Versatile Nanoreactors for Metal Extraction.
    Wang Q; Luo W; Chen X; Fan J; Jiang W; Wang L; Jiang W; Zhang WX; Yang J
    Chemistry; 2018 Oct; 24(58):15663-15668. PubMed ID: 30113103
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assembly of Ring-Shaped Phosphorus within Carbon Nanotube Nanoreactors.
    Zhang J; Zhao D; Xiao D; Ma C; Du H; Li X; Zhang L; Huang J; Huang H; Jia CL; Tománek D; Niu C
    Angew Chem Int Ed Engl; 2017 Feb; 56(7):1850-1854. PubMed ID: 28074606
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.