These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 35571775)

  • 1. Impact of Low Temperatures on the Lithiation and Delithiation Properties of Si-Based Electrodes in Ionic Liquid Electrolytes.
    Domi Y; Usui H; Hirosawa T; Sugimoto K; Nakano T; Ando A; Sakaguchi H
    ACS Omega; 2022 May; 7(18):15846-15853. PubMed ID: 35571775
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lithiation/Delithiation Properties of Lithium Silicide Electrodes in Ionic-Liquid Electrolytes.
    Domi Y; Usui H; Ieuji N; Nishikawa K; Sakaguchi H
    ACS Appl Mater Interfaces; 2021 Jan; 13(3):3816-3824. PubMed ID: 33448801
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Silicon-Based Anodes with Long Cycle Life for Lithium-Ion Batteries Achieved by Significant Suppression of Their Volume Expansion in Ionic-Liquid Electrolyte.
    Domi Y; Usui H; Yamaguchi K; Yodoya S; Sakaguchi H
    ACS Appl Mater Interfaces; 2019 Jan; 11(3):2950-2960. PubMed ID: 30608119
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ionic Liquid-Organic Carbonate Electrolyte Blends To Stabilize Silicon Electrodes for Extending Lithium Ion Battery Operability to 100 °C.
    Ababtain K; Babu G; Lin X; Rodrigues MT; Gullapalli H; Ajayan PM; Grinstaff MW; Arava LM
    ACS Appl Mater Interfaces; 2016 Jun; 8(24):15242-9. PubMed ID: 27237138
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Behavior of Germanium and Silicon Nanowire Anodes with Ionic Liquid Electrolytes.
    Kim GT; Kennedy T; Brandon M; Geaney H; Ryan KM; Passerini S; Appetecchi GB
    ACS Nano; 2017 Jun; 11(6):5933-5943. PubMed ID: 28530820
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stable Cycle Performance of a Phosphorus Negative Electrode in Lithium-Ion Batteries Derived from Ionic Liquid Electrolytes.
    Kaushik S; Matsumoto K; Hagiwara R
    ACS Appl Mater Interfaces; 2021 Mar; 13(9):10891-10901. PubMed ID: 33630586
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Excellent Deformable Oxide Glass Electrolytes and Oxide-Type All-Solid-State Li
    Nagata H; Akimoto J
    ACS Appl Mater Interfaces; 2021 Aug; 13(30):35785-35794. PubMed ID: 34288643
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-Assembled Framework Formed During Lithiation of SnS
    Yin K; Zhang M; Hood ZD; Pan J; Meng YS; Chi M
    Acc Chem Res; 2017 Jul; 50(7):1513-1520. PubMed ID: 28682057
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Charge-Discharge and Interfacial Properties of Ionic Liquid-Added Hybrid Electrolytes for Lithium-Sulfur Batteries.
    Suriyakumar S; Kathiresan M; Stephan AM
    ACS Omega; 2019 Feb; 4(2):3894-3903. PubMed ID: 31459600
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Step toward High-Energy Silicon-Based Thin Film Lithium Ion Batteries.
    Reyes Jiménez A; Klöpsch R; Wagner R; Rodehorst UC; Kolek M; Nölle R; Winter M; Placke T
    ACS Nano; 2017 May; 11(5):4731-4744. PubMed ID: 28437078
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of Phosphorus-Doping on Electrochemical Performance of Silicon Negative Electrodes in Lithium-Ion Batteries.
    Domi Y; Usui H; Shimizu M; Kakimoto Y; Sakaguchi H
    ACS Appl Mater Interfaces; 2016 Mar; 8(11):7125-32. PubMed ID: 26938119
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reaction Behavior of a Silicide Electrode with Lithium in an Ionic-Liquid Electrolyte.
    Domi Y; Usui H; Sugimoto K; Gotoh K; Nishikawa K; Sakaguchi H
    ACS Omega; 2020 Sep; 5(35):22631-22636. PubMed ID: 32923823
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrochemical Performance of an Ultrathin Surface Oxide-Modulated Nano-Si Anode Confined in a Graphite Matrix for Highly Reversible Lithium-Ion Batteries.
    Maddipatla R; Loka C; Lee KS
    ACS Appl Mater Interfaces; 2020 Dec; 12(49):54608-54618. PubMed ID: 33231419
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanostructured electrolytes for stable lithium electrodeposition in secondary batteries.
    Tu Z; Nath P; Lu Y; Tikekar MD; Archer LA
    Acc Chem Res; 2015 Nov; 48(11):2947-56. PubMed ID: 26496667
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quasi-Solid Electrolytes for High Temperature Lithium Ion Batteries.
    Kalaga K; Rodrigues MT; Gullapalli H; Babu G; Arava LM; Ajayan PM
    ACS Appl Mater Interfaces; 2015 Nov; 7(46):25777-83. PubMed ID: 26535786
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rechargeable aluminum batteries: effects of cations in ionic liquid electrolytes.
    Zhu G; Angell M; Pan CJ; Lin MC; Chen H; Huang CJ; Lin J; Achazi AJ; Kaghazchi P; Hwang BJ; Dai H
    RSC Adv; 2019 Apr; 9(20):11322-11330. PubMed ID: 35520252
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface Coating Constraint Induced Anisotropic Swelling of Silicon in Si-Void@SiO
    Liu Q; Cui Z; Zou R; Zhang J; Xu K; Hu J
    Small; 2017 Apr; 13(13):. PubMed ID: 28121377
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Promoting Rechargeable Batteries Operated at Low Temperature.
    Dong X; Wang YG; Xia Y
    Acc Chem Res; 2021 Oct; 54(20):3883-3894. PubMed ID: 34622652
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solid Electrolyte Lithium Phosphous Oxynitride as a Protective Nanocladding Layer for 3D High-Capacity Conversion Electrodes.
    Lin CF; Noked M; Kozen AC; Liu C; Zhao O; Gregorczyk K; Hu L; Lee SB; Rubloff GW
    ACS Nano; 2016 Feb; 10(2):2693-701. PubMed ID: 26820038
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.