BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 35572041)

  • 1. Autosegmentation based on different-sized training datasets of consistently-curated volumes and impact on rectal contours in prostate cancer radiation therapy.
    Elisabeth Olsson C; Suresh R; Niemelä J; Akram SU; Valdman A
    Phys Imaging Radiat Oncol; 2022 Apr; 22():67-72. PubMed ID: 35572041
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of a commercial DIR platform for contour propagation in prostate cancer patients treated with IMRT/VMAT.
    Hammers JE; Pirozzi S; Lindsay D; Kaidar-Person O; Tan X; Chen RC; Das SK; Mavroidis P
    J Appl Clin Med Phys; 2020 Feb; 21(2):14-25. PubMed ID: 32058663
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Clinical application and improvement of a CNN-based autosegmentation model for clinical target volumes in cervical cancer radiotherapy.
    Chang Y; Wang Z; Peng Z; Zhou J; Pi Y; Xu XG; Pei X
    J Appl Clin Med Phys; 2021 Nov; 22(11):115-125. PubMed ID: 34643320
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Technical Note: A deep learning-based autosegmentation of rectal tumors in MR images.
    Wang J; Lu J; Qin G; Shen L; Sun Y; Ying H; Zhang Z; Hu W
    Med Phys; 2018 Jun; 45(6):2560-2564. PubMed ID: 29663417
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of different contouring definitions of the rectum as organ at risk (OAR) and dose-volume parameters predicting rectal inflammation in radiotherapy of prostate cancer: which definition to use?
    Nitsche M; Brannath W; Brückner M; Wagner D; Kaltenborn A; Temme N; Hermann RM
    Br J Radiol; 2017 Feb; 90(1070):20160370. PubMed ID: 27936891
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of organ at risk definition on rectal dose-volume histograms in patients with prostate cancer undergoing external-beam radiotherapy.
    Boehmer D; Kuczer D; Badakhshi H; Stiefel S; Kuschke W; Wernecke KD; Budach V
    Strahlenther Onkol; 2006 May; 182(5):277-82. PubMed ID: 16673061
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stress-testing pelvic autosegmentation algorithms using anatomical edge cases.
    Kanwar A; Merz B; Claunch C; Rana S; Hung A; Thompson RF
    Phys Imaging Radiat Oncol; 2023 Jan; 25():100413. PubMed ID: 36793398
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Autosegmentation of the rectum on megavoltage image guidance scans.
    Shelley LEA; Sutcliffe MPF; Harrison K; Scaife JE; Parker MA; Romanchikova M; Thomas SJ; Jena R; Burnet NG
    Biomed Phys Eng Express; 2019 Feb; 5(2):025006. PubMed ID: 31057946
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deformable image registration based automatic CT-to-CT contour propagation for head and neck adaptive radiotherapy in the routine clinical setting.
    Kumarasiri A; Siddiqui F; Liu C; Yechieli R; Shah M; Pradhan D; Zhong H; Chetty IJ; Kim J
    Med Phys; 2014 Dec; 41(12):121712. PubMed ID: 25471959
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep learning for automatic head and neck lymph node level delineation provides expert-level accuracy.
    Weissmann T; Huang Y; Fischer S; Roesch J; Mansoorian S; Ayala Gaona H; Gostian AO; Hecht M; Lettmaier S; Deloch L; Frey B; Gaipl US; Distel LV; Maier A; Iro H; Semrau S; Bert C; Fietkau R; Putz F
    Front Oncol; 2023; 13():1115258. PubMed ID: 36874135
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluating the clinical acceptability of deep learning contours of prostate and organs-at-risk in an automated prostate treatment planning process.
    Duan J; Bernard M; Downes L; Willows B; Feng X; Mourad WF; St Clair W; Chen Q
    Med Phys; 2022 Apr; 49(4):2570-2581. PubMed ID: 35147216
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multi-institutional quantitative evaluation and clinical validation of Smart Probabilistic Image Contouring Engine (SPICE) autosegmentation of target structures and normal tissues on computer tomography images in the head and neck, thorax, liver, and male pelvis areas.
    Zhu M; Bzdusek K; Brink C; Eriksen JG; Hansen O; Jensen HA; Gay HA; Thorstad W; Widder J; Brouwer CL; Steenbakkers RJ; Vanhauten HA; Cao JQ; McBrayne G; Patel SH; Cannon DM; Hardcastle N; Tomé WA; Guckenberg M; Parikh PJ
    Int J Radiat Oncol Biol Phys; 2013 Nov; 87(4):809-16. PubMed ID: 24138920
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Late rectal bleeding after conformal radiotherapy of prostate cancer. II. Volume effects and dose-volume histograms.
    Jackson A; Skwarchuk MW; Zelefsky MJ; Cowen DM; Venkatraman ES; Levegrun S; Burman CM; Kutcher GJ; Fuks Z; Liebel SA; Ling CC
    Int J Radiat Oncol Biol Phys; 2001 Mar; 49(3):685-98. PubMed ID: 11172950
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of a delineation software for cardiac atlas-based autosegmentation: An example of the use of artificial intelligence in modern radiotherapy.
    Loap P; Tkatchenko N; Kirova Y
    Cancer Radiother; 2020 Dec; 24(8):826-833. PubMed ID: 33144062
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Autosegmentation of prostate anatomy for radiation treatment planning using deep decision forests of radiomic features.
    Macomber MW; Phillips M; Tarapov I; Jena R; Nori A; Carter D; Folgoc LL; Criminisi A; Nyflot MJ
    Phys Med Biol; 2018 Nov; 63(23):235002. PubMed ID: 30465543
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transfer Learning-Based Autosegmentation of Primary Tumor Volumes of Glioblastomas Using Preoperative MRI for Radiotherapy Treatment.
    Tian S; Wang C; Zhang R; Dai Z; Jia L; Zhang W; Wang J; Liu Y
    Front Oncol; 2022; 12():856346. PubMed ID: 35494067
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of rectal volume definition techniques and their influence on rectal toxicity in patients with prostate cancer treated with 3D conformal radiotherapy: a dose-volume analysis.
    Onal C; Topkan E; Efe E; Yavuz M; Sonmez S; Yavuz A
    Radiat Oncol; 2009 May; 4():14. PubMed ID: 19432953
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Clinical implementation of deep learning contour autosegmentation for prostate radiotherapy.
    Cha E; Elguindi S; Onochie I; Gorovets D; Deasy JO; Zelefsky M; Gillespie EF
    Radiother Oncol; 2021 Jun; 159():1-7. PubMed ID: 33667591
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automatic segmentation for adaptive planning in nasopharyngeal carcinoma IMRT: Time, geometrical, and dosimetric analysis.
    Fung NTC; Hung WM; Sze CK; Lee MCH; Ng WT
    Med Dosim; 2020 Spring; 45(1):60-65. PubMed ID: 31345672
    [TBL] [Abstract][Full Text] [Related]  

  • 20. FEMOSSA: Patient-specific finite element simulation of the prostate-rectum spacer placement, a predictive model for prostate cancer radiotherapy.
    Hooshangnejad H; Youssefian S; Guest JK; Ding K
    Med Phys; 2021 Jul; 48(7):3438-3452. PubMed ID: 34021606
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.