These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 35572041)

  • 21. FEMOSSA: Patient-specific finite element simulation of the prostate-rectum spacer placement, a predictive model for prostate cancer radiotherapy.
    Hooshangnejad H; Youssefian S; Guest JK; Ding K
    Med Phys; 2021 Jul; 48(7):3438-3452. PubMed ID: 34021606
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Volume and hormonal effects for acute side effects of rectum and bladder during conformal radiotherapy for prostate cancer.
    Peeters ST; Hoogeman MS; Heemsbergen WD; Slot A; Tabak H; Koper PC; Lebesque JV
    Int J Radiat Oncol Biol Phys; 2005 Nov; 63(4):1142-52. PubMed ID: 15939547
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Assessment of Optimizers and their Performance in Autosegmenting Lung Tumors.
    Ramachandran P; Eswarlal T; Lehman M; Colbert Z
    J Med Phys; 2023; 48(2):129-135. PubMed ID: 37576091
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Definition of prostatic contours using tomodensitometric slices: study of differences among radiotherapists and between examinations].
    Oozeer R; Chauvet B; Toy BJ; Berger C; Garcia R; Felix-Faure C; Le Thanh H; Reboul F
    Cancer Radiother; 1999; 3(4):333-40. PubMed ID: 10486545
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A novel approach for establishing benchmark CBCT/CT deformable image registrations in prostate cancer radiotherapy.
    Kim J; Kumar S; Liu C; Zhong H; Pradhan D; Shah M; Cattaneo R; Yechieli R; Robbins JR; Elshaikh MA; Chetty IJ
    Phys Med Biol; 2013 Nov; 58(22):8077-97. PubMed ID: 24171908
    [TBL] [Abstract][Full Text] [Related]  

  • 26. How does CBCT reconstruction algorithm impact on deformably mapped targets and accumulated dose distributions?
    Mao W; Liu C; Gardner SJ; Elshaikh M; Aref I; Lee JK; Pradhan D; Siddiqui F; Snyder KC; Kumarasiri A; Zhao B; Kim J; Li H; Wen NW; Movsas B; Chetty IJ
    J Appl Clin Med Phys; 2021 Sep; 22(9):37-48. PubMed ID: 34378308
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Clinical Evaluation of Deep Learning and Atlas-Based Auto-Contouring of Bladder and Rectum for Prostate Radiation Therapy.
    Zabel WJ; Conway JL; Gladwish A; Skliarenko J; Didiodato G; Goorts-Matthews L; Michalak A; Reistetter S; King J; Nakonechny K; Malkoske K; Tran MN; McVicar N
    Pract Radiat Oncol; 2021; 11(1):e80-e89. PubMed ID: 32599279
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Performance of an atlas-based autosegmentation software for delineation of target volumes for radiotherapy of breast and anorectal cancer.
    Anders LC; Stieler F; Siebenlist K; Schäfer J; Lohr F; Wenz F
    Radiother Oncol; 2012 Jan; 102(1):68-73. PubMed ID: 21962822
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A multiphase validation of atlas-based automatic and semiautomatic segmentation strategies for prostate MRI.
    Martin S; Rodrigues G; Patil N; Bauman G; D'Souza D; Sexton T; Palma D; Louie AV; Khalvati F; Tizhoosh HR; Gaede S
    Int J Radiat Oncol Biol Phys; 2013 Jan; 85(1):95-100. PubMed ID: 22572076
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Analysis of Geometric Performance and Dosimetric Impact of Using Automatic Contour Segmentation for Radiotherapy Planning.
    Cao M; Stiehl B; Yu VY; Sheng K; Kishan AU; Chin RK; Yang Y; Ruan D
    Front Oncol; 2020; 10():1762. PubMed ID: 33102206
    [No Abstract]   [Full Text] [Related]  

  • 31. Dosimetric impact of deep learning-based CT auto-segmentation on radiation therapy treatment planning for prostate cancer.
    Kawula M; Purice D; Li M; Vivar G; Ahmadi SA; Parodi K; Belka C; Landry G; Kurz C
    Radiat Oncol; 2022 Jan; 17(1):21. PubMed ID: 35101068
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Clinical evaluation of atlas- and deep learning-based automatic segmentation of multiple organs and clinical target volumes for breast cancer.
    Choi MS; Choi BS; Chung SY; Kim N; Chun J; Kim YB; Chang JS; Kim JS
    Radiother Oncol; 2020 Dec; 153():139-145. PubMed ID: 32991916
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparing deep learning-based auto-segmentation of organs at risk and clinical target volumes to expert inter-observer variability in radiotherapy planning.
    Wong J; Fong A; McVicar N; Smith S; Giambattista J; Wells D; Kolbeck C; Giambattista J; Gondara L; Alexander A
    Radiother Oncol; 2020 Mar; 144():152-158. PubMed ID: 31812930
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Changes in target volumes definition by using MRI for prostate bed radiotherapy planning--preliminary results].
    Sefrová J; Paluska ; Odrázka K; Belobradek Z; Hoffmann P; Prosvic P; Brod'ák M; Louda M; Macingová Z; Vosmik M
    Klin Onkol; 2010; 23(4):256-63. PubMed ID: 20806824
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Defining the risk of developing grade 2 proctitis following 125I prostate brachytherapy using a rectal dose-volume histogram analysis.
    Snyder KM; Stock RG; Hong SM; Lo YC; Stone NN
    Int J Radiat Oncol Biol Phys; 2001 Jun; 50(2):335-41. PubMed ID: 11380219
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Two-stage deep learning model for fully automated pancreas segmentation on computed tomography: Comparison with intra-reader and inter-reader reliability at full and reduced radiation dose on an external dataset.
    Panda A; Korfiatis P; Suman G; Garg SK; Polley EC; Singh DP; Chari ST; Goenka AH
    Med Phys; 2021 May; 48(5):2468-2481. PubMed ID: 33595105
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Clinical validation of atlas-based auto-segmentation of multiple target volumes and normal tissue (swallowing/mastication) structures in the head and neck.
    Teguh DN; Levendag PC; Voet PW; Al-Mamgani A; Han X; Wolf TK; Hibbard LS; Nowak P; Akhiat H; Dirkx ML; Heijmen BJ; Hoogeman MS
    Int J Radiat Oncol Biol Phys; 2011 Nov; 81(4):950-7. PubMed ID: 20932664
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Contouring variability of human- and deformable-generated contours in radiotherapy for prostate cancer.
    Gardner SJ; Wen N; Kim J; Liu C; Pradhan D; Aref I; Cattaneo R; Vance S; Movsas B; Chetty IJ; Elshaikh MA
    Phys Med Biol; 2015 Jun; 60(11):4429-47. PubMed ID: 25988718
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Various techniques of contouring the rectum and their impact on rectal dose-volume histograms.
    Liu M; Berthelet E; Patterson K; Dick K; Kwan W
    Med Dosim; 2003; 28(3):189-92. PubMed ID: 14563439
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparing Breast Conservation Surgery Seromas Contoured by Radiation Therapists versus those Contoured by a Radiation Oncologist in Radiation Therapy Planning for Early-Stage Breast Cancer.
    Oultram S; Dempsey S; Greer P; Clapham M
    J Med Imaging Radiat Sci; 2020 Mar; 51(1):108-116. PubMed ID: 31983574
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.