These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 35572060)

  • 1. Prevention and Detection Research of Intelligent Sports Rehabilitation under the Background of Artificial Intelligence.
    Huang Q; Wang F
    Appl Bionics Biomech; 2022; 2022():3347166. PubMed ID: 35572060
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Advanced Adaptive Control of Lower Limb Rehabilitation Robot.
    Du Y; Wang H; Qiu S; Yao W; Xie P; Chen X
    Front Robot AI; 2018; 5():116. PubMed ID: 33500995
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Research on Robot Fuzzy Neural Network Motion System Based on Artificial Intelligence.
    Hu J
    Comput Intell Neurosci; 2022; 2022():4347772. PubMed ID: 35186062
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Robust Inner and Outer Loop Control Method for Trajectory Tracking of a Quadrotor.
    Xia D; Cheng L; Yao Y
    Sensors (Basel); 2017 Sep; 17(9):. PubMed ID: 28925984
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distributed Intelligent Learning and Decision Model Based on Logic Predictive Control.
    Zhou Y; Lu W; Zhang Y
    Comput Intell Neurosci; 2022; 2022():6431776. PubMed ID: 36082343
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of Improved VMD-LSTM Model in Sports Artificial Intelligence.
    Zhang T; Fu C
    Comput Intell Neurosci; 2022; 2022():3410153. PubMed ID: 35875744
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dual-Arm Coordinated Control Strategy Based on Modified Sliding Mode Impedance Controller.
    Liu X; Xu X; Zhu Z; Jiang Y
    Sensors (Basel); 2021 Jul; 21(14):. PubMed ID: 34300391
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Learning from neural control.
    Wang C; Hill DJ
    IEEE Trans Neural Netw; 2006 Jan; 17(1):130-46. PubMed ID: 16526482
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rehabilitation Treatment of Muscle Strain in Athlete Training under Intelligent Intervention.
    Qiao Y; Zhang L; Zhang B
    Comput Math Methods Med; 2022; 2022():5403681. PubMed ID: 35392589
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adaptive interaction torque-based AAN control for lower limb rehabilitation exoskeleton.
    Wang Y; Wang H; Tian Y
    ISA Trans; 2022 Sep; 128(Pt A):184-197. PubMed ID: 34716010
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Research Progress on the Application of Artificial Intelligence in Rehabilitation Medicine in China].
    Chen KY; Liu SY; Ji X; Zhang H; Li T
    Zhongguo Yi Xue Ke Xue Yuan Xue Bao; 2021 Oct; 43(5):773-784. PubMed ID: 34728040
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Path Planning and Impedance Control of a Soft Modular Exoskeleton for Coordinated Upper Limb Rehabilitation.
    Liu Q; Liu Y; Li Y; Zhu C; Meng W; Ai Q; Xie SQ
    Front Neurorobot; 2021; 15():745531. PubMed ID: 34790109
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Artificial intelligence-based nonlinear control of renewable energies and storage system in a DC microgrid.
    Zehra SS; Rahman AU; Armghan H; Ahmad I; Ammara U
    ISA Trans; 2022 Feb; 121():217-231. PubMed ID: 33894974
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development, Dynamic Modeling, and Multi-Modal Control of a Therapeutic Exoskeleton for Upper Limb Rehabilitation Training.
    Wu Q; Wu H
    Sensors (Basel); 2018 Oct; 18(11):. PubMed ID: 30356005
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intelligent motion control for linear piezoelectric ceramic motor drive.
    Wai RJ; Lee JD
    IEEE Trans Syst Man Cybern B Cybern; 2004 Oct; 34(5):2100-11. PubMed ID: 15503505
    [TBL] [Abstract][Full Text] [Related]  

  • 16. sEMG-Based Gain-Tuned Compliance Control for the Lower Limb Rehabilitation Robot during Passive Training.
    Tian J; Wang H; Zheng S; Ning Y; Zhang X; Niu J; Vladareanu L
    Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298256
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A neural tracking and motor control approach to improve rehabilitation of upper limb movements.
    Goffredo M; Bernabucci I; Schmid M; Conforto S
    J Neuroeng Rehabil; 2008 Feb; 5():5. PubMed ID: 18251996
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Control of Time Delay Force Feedback Teleoperation System With Finite Time Convergence.
    Wang J; Tian J; Zhang X; Yang B; Liu S; Yin L; Zheng W
    Front Neurorobot; 2022; 16():877069. PubMed ID: 35599666
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adaptive hybrid robotic system for rehabilitation of reaching movement after a brain injury: a usability study.
    Resquín F; Gonzalez-Vargas J; Ibáñez J; Brunetti F; Dimbwadyo I; Carrasco L; Alves S; Gonzalez-Alted C; Gomez-Blanco A; Pons JL
    J Neuroeng Rehabil; 2017 Oct; 14(1):104. PubMed ID: 29025427
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neural Networks Application for the Data of PID Controller for Acrobot.
    Danh NC
    ScientificWorldJournal; 2022; 2022():9162352. PubMed ID: 35463827
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.