These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 35572119)

  • 21. Rapid and sensitive detection of uranyl ion with citrate-stabilized silver nanoparticles by the surface-enhanced Raman scattering technique.
    Jiang J; Wang S; Deng H; Wu H; Chen J; Liao J
    R Soc Open Sci; 2018 Nov; 5(11):181099. PubMed ID: 30564403
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A turn-off fluorescent biosensor for the rapid and sensitive detection of uranyl ion based on molybdenum disulfide nanosheets and specific DNAzyme.
    Zhang H; Ruan Y; Lin L; Lin M; Zeng X; Xi Z; Fu F
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Jul; 146():1-6. PubMed ID: 25797343
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Colorimetric determination of uranyl (UO
    Huang C; Fan X; Yuan Q; Zhang X; Hou X; Wu P
    Talanta; 2018 Aug; 185():258-263. PubMed ID: 29759198
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Resonance light scattering determination of uranyl based on labeled DNAzyme-gold nanoparticle system.
    Zhou B; Shi LF; Wang YS; Yang HX; Xue JH; Liu L; Wang YS; Yin JC; Wang JC
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Jun; 110():419-24. PubMed ID: 23583878
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Rational designing an azo colorimetric sensor with high selectivity and sensitivity for uranium environmental monitoring.
    Wu X; Yin Q; Huang Q; Mao Y; Hu Q; Wang H
    Anal Chim Acta; 2020 Dec; 1140():153-167. PubMed ID: 33218477
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Highly Sensitive and Selective Uranium Detection in Natural Water Systems Using a Luminescent Mesoporous Metal-Organic Framework Equipped with Abundant Lewis Basic Sites: A Combined Batch, X-ray Absorption Spectroscopy, and First Principles Simulation Investigation.
    Liu W; Dai X; Bai Z; Wang Y; Yang Z; Zhang L; Xu L; Chen L; Li Y; Gui D; Diwu J; Wang J; Zhou R; Chai Z; Wang S
    Environ Sci Technol; 2017 Apr; 51(7):3911-3921. PubMed ID: 28271891
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ultrasensitive detection of uranyl by graphene oxide-based background reduction and RCDzyme-based enzyme strand recycling signal amplification.
    Li MH; Wang YS; Cao JX; Chen SH; Tang X; Wang XF; Zhu YF; Huang YQ
    Biosens Bioelectron; 2015 Oct; 72():294-9. PubMed ID: 26000462
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electrochemical DNAzyme sensor for lead based on amplification of DNA-Au bio-bar codes.
    Shen L; Chen Z; Li Y; He S; Xie S; Xu X; Liang Z; Meng X; Li Q; Zhu Z; Li M; Le XC; Shao Y
    Anal Chem; 2008 Aug; 80(16):6323-8. PubMed ID: 18627134
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A highly sensitive DNAzyme-based SERS biosensor for quantitative detection of lead ions in human serum.
    Xu W; Zhao A; Zuo F; Khan R; Hussain HMJ; Li J
    Anal Bioanal Chem; 2020 Jul; 412(19):4565-4574. PubMed ID: 32468280
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Development of a DNAzyme-based colorimetric biosensor assay for dual detection of Cd
    Li D; Ling S; Cheng X; Yang Z; Lv B
    Anal Bioanal Chem; 2021 Nov; 413(28):7081-7091. PubMed ID: 34585255
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An immobilization free DNAzyme based electrochemical biosensor for lead determination.
    Tan Y; Qiu J; Cui M; Wei X; Zhao M; Qiu B; Chen G
    Analyst; 2016 Feb; 141(3):1121-6. PubMed ID: 26689961
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Direct Detection of Uranyl in Urine by Dissociation from Aptamer-Modified Nanosensor Arrays.
    Meir R; Zverzhinetsky M; Harpak N; Borberg E; Burstein L; Zeiri O; Krivitsky V; Patolsky F
    Anal Chem; 2020 Sep; 92(18):12528-12537. PubMed ID: 32842739
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sensitive SERS detection of lead ions via DNAzyme based quadratic signal amplification.
    Tian A; Liu Y; Gao J
    Talanta; 2017 Aug; 171():185-189. PubMed ID: 28551127
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Recent Advances on DNAzyme-Based Sensing.
    Huang Z; Wang X; Wu Z; Jiang JH
    Chem Asian J; 2022 Mar; 17(6):e202101414. PubMed ID: 35156764
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Flexible DNA Hydrogel SERS Active Biofilms for Conformal Ultrasensitive Detection of Uranyl Ions from Aquatic Products.
    He X; Zhou X; Liu W; Liu Y; Wang X
    Langmuir; 2020 Mar; 36(11):2930-2936. PubMed ID: 32114763
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Recent Advances in the Recognition Elements of Sensors to Detect Pyrethroids in Food: A Review.
    Zhang L; Zhao M; Xiao M; Im MH; Abd El-Aty AM; Shao H; She Y
    Biosensors (Basel); 2022 Jun; 12(6):. PubMed ID: 35735550
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Factors influencing the performance of G-quadruplex DNAzyme-based sensors.
    Kong DM
    Methods; 2013 Dec; 64(3):199-204. PubMed ID: 23872055
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Label-free detection of Cu(2+) and Hg(2+) ions using reconstructed Cu(2+)-specific DNAzyme and G-quadruplex DNAzyme.
    Li H; Huang XX; Cai Y; Xiao HJ; Zhang QF; Kong DM
    PLoS One; 2013; 8(9):e73012. PubMed ID: 24039849
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Colorimetric Detection of Uranyl Using a Litmus Test.
    Manochehry S; McConnell EM; Tram KQ; Macri J; Li Y
    Front Chem; 2018; 6():332. PubMed ID: 30140672
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Design and synthesis of target-responsive hydrogel for portable visual quantitative detection of uranium with a microfluidic distance-based readout device.
    Huang Y; Fang L; Zhu Z; Ma Y; Zhou L; Chen X; Xu D; Yang C
    Biosens Bioelectron; 2016 Nov; 85():496-502. PubMed ID: 27209576
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.