These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
465 related articles for article (PubMed ID: 35572400)
1. Toxicity and action mechanisms of silver nanoparticles against the mycotoxin-producing fungus Jian Y; Chen X; Ahmed T; Shang Q; Zhang S; Ma Z; Yin Y J Adv Res; 2022 May; 38():1-12. PubMed ID: 35572400 [TBL] [Abstract][Full Text] [Related]
2. Venturicidin A Is a Potential Fungicide for Controlling Hu L; Guo C; Chen J; Jia R; Sun Y; Cao S; Xiang P; Wang Y J Agric Food Chem; 2023 Aug; 71(33):12440-12451. PubMed ID: 37566096 [No Abstract] [Full Text] [Related]
3. Antifungal Activity of Quinofumelin against Xiu Q; Bi L; Xu H; Li T; Zhou Z; Li Z; Wang J; Duan Y; Zhou M Toxins (Basel); 2021 May; 13(5):. PubMed ID: 34066154 [No Abstract] [Full Text] [Related]
4. Antifungal effect of engineered silver nanoparticles on phytopathogenic and toxigenic Fusarium spp. and their impact on mycotoxin accumulation. Tarazona A; Gómez JV; Mateo EM; Jiménez M; Mateo F Int J Food Microbiol; 2019 Oct; 306():108259. PubMed ID: 31349113 [TBL] [Abstract][Full Text] [Related]
5. Effects of validamycin in controlling Fusarium head blight caused by Fusarium graminearum: Inhibition of DON biosynthesis and induction of host resistance. Li J; Duan Y; Bian C; Pan X; Yao C; Wang J; Zhou M Pestic Biochem Physiol; 2019 Jan; 153():152-160. PubMed ID: 30744889 [TBL] [Abstract][Full Text] [Related]
6. Edeine B Kim B; Nguyen MV; Park J; Kim YS; Han JW; Lee J-Y; Jeon J; Son H; Choi GJ; Kim H mBio; 2024 Jul; 15(7):e0135124. PubMed ID: 38860787 [TBL] [Abstract][Full Text] [Related]
7. Activity of Demethylation Inhibitor Fungicide Metconazole on Chinese Duan Y; Tao X; Zhao H; Xiao X; Li M; Wang J; Zhou M Plant Dis; 2019 May; 103(5):929-937. PubMed ID: 30880557 [No Abstract] [Full Text] [Related]
8. Transcriptomic profiling to identify genes involved in Fusarium mycotoxin Deoxynivalenol and Zearalenone tolerance in the mycoparasitic fungus Clonostachys rosea. Kosawang C; Karlsson M; Jensen DF; Dilokpimol A; Collinge DB BMC Genomics; 2014 Jan; 15():55. PubMed ID: 24450745 [TBL] [Abstract][Full Text] [Related]
9. Enantioselective effect of chiral fungicide prothioconazole on Fusarium graminearum: Fungicidal activity and DON biosynthesis. Li C; Liu C Environ Pollut; 2022 Aug; 307():119553. PubMed ID: 35640724 [TBL] [Abstract][Full Text] [Related]
10. The Dynamin-Like GTPase FgSey1 Plays a Critical Role in Fungal Development and Virulence in Fusarium graminearum. Chong X; Wang C; Wang Y; Wang Y; Zhang L; Liang Y; Chen L; Zou S; Dong H Appl Environ Microbiol; 2020 May; 86(11):. PubMed ID: 32220839 [No Abstract] [Full Text] [Related]
11. Reduced susceptibility to Fusarium head blight in Brachypodium distachyon through priming with the Fusarium mycotoxin deoxynivalenol. Blümke A; Sode B; Ellinger D; Voigt CA Mol Plant Pathol; 2015 Jun; 16(5):472-83. PubMed ID: 25202860 [TBL] [Abstract][Full Text] [Related]
12. Hydrogen peroxide induced by the fungicide prothioconazole triggers deoxynivalenol (DON) production by Fusarium graminearum. Audenaert K; Callewaert E; Höfte M; De Saeger S; Haesaert G BMC Microbiol; 2010 Apr; 10():112. PubMed ID: 20398299 [TBL] [Abstract][Full Text] [Related]
13. Identification of ABC transporter genes of Fusarium graminearum with roles in azole tolerance and/or virulence. Abou Ammar G; Tryono R; Döll K; Karlovsky P; Deising HB; Wirsel SG PLoS One; 2013; 8(11):e79042. PubMed ID: 24244413 [TBL] [Abstract][Full Text] [Related]
14. Bacillomycin D Produced by Bacillus amyloliquefaciens Is Involved in the Antagonistic Interaction with the Plant-Pathogenic Fungus Fusarium graminearum. Gu Q; Yang Y; Yuan Q; Shi G; Wu L; Lou Z; Huo R; Wu H; Borriss R; Gao X Appl Environ Microbiol; 2017 Oct; 83(19):. PubMed ID: 28733288 [No Abstract] [Full Text] [Related]
15. The sphinganine C4-hydroxylase FgSur2 regulates sensitivity to azole antifungal agents and virulence of Fusarium graminearum. Wang H; Zhang Y; Wang J; Chen Y; Hou T; Zhao Y; Ma Z Microbiol Res; 2023 Jun; 271():127347. PubMed ID: 36907072 [TBL] [Abstract][Full Text] [Related]
16. Ethylenediaminetetraacetic Acid Disodium Salt Acts as an Antifungal Candidate Molecule against Song XS; Gu KX; Gao J; Wang JX; Ding SC; Zhou M Toxins (Basel); 2020 Dec; 13(1):. PubMed ID: 33375470 [No Abstract] [Full Text] [Related]
17. Adaptation of Fusarium graminearum to tebuconazole yielded descendants diverging for levels of fitness, fungicide resistance, virulence, and mycotoxin production. Becher R; Hettwer U; Karlovsky P; Deising HB; Wirsel SG Phytopathology; 2010 May; 100(5):444-53. PubMed ID: 20373965 [TBL] [Abstract][Full Text] [Related]
18. Mechanism of validamycin A inhibiting DON biosynthesis and synergizing with DMI fungicides against Fusarium graminearum. Bian C; Duan Y; Xiu Q; Wang J; Tao X; Zhou M Mol Plant Pathol; 2021 Jul; 22(7):769-785. PubMed ID: 33934484 [TBL] [Abstract][Full Text] [Related]
19. Systemic growth of F. graminearum in wheat plants and related accumulation of deoxynivalenol. Moretti A; Panzarini G; Somma S; Campagna C; Ravaglia S; Logrieco AF; Solfrizzo M Toxins (Basel); 2014 Apr; 6(4):1308-24. PubMed ID: 24727554 [TBL] [Abstract][Full Text] [Related]
20. Characterization of the fludioxonil and phenamacril dual resistant mutants of Fusarium graminearum. Wen Z; Zhang Y; Chen Y; Zhao Y; Shao W; Ma Z Pestic Biochem Physiol; 2024 Mar; 200():105815. PubMed ID: 38582573 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]