These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
441 related articles for article (PubMed ID: 35572597)
21. Radiogenomic Models Using Machine Learning Techniques to Predict EGFR Mutations in Non-Small Cell Lung Cancer. Nair JKR; Saeed UA; McDougall CC; Sabri A; Kovacina B; Raidu BVS; Khokhar RA; Probst S; Hirsh V; Chankowsky J; Van Kempen LC; Taylor J Can Assoc Radiol J; 2021 Feb; 72(1):109-119. PubMed ID: 32063026 [TBL] [Abstract][Full Text] [Related]
22. A Machine Learning Model Based on PET/CT Radiomics and Clinical Characteristics Predicts ALK Rearrangement Status in Lung Adenocarcinoma. Chang C; Sun X; Wang G; Yu H; Zhao W; Ge Y; Duan S; Qian X; Wang R; Lei B; Wang L; Liu L; Ruan M; Yan H; Liu C; Chen J; Xie W Front Oncol; 2021; 11():603882. PubMed ID: 33738250 [TBL] [Abstract][Full Text] [Related]
23. Predicting PD-L1 expression status in patients with non-small cell lung cancer using [ Zhao X; Zhao Y; Zhang J; Zhang Z; Liu L; Zhao X EJNMMI Res; 2023 Jan; 13(1):4. PubMed ID: 36682020 [TBL] [Abstract][Full Text] [Related]
24. Using contrast-enhanced CT and non-contrast-enhanced CT to predict EGFR mutation status in NSCLC patients-a radiomics nomogram analysis. Yang X; Liu M; Ren Y; Chen H; Yu P; Wang S; Zhang R; Dai H; Wang C Eur Radiol; 2022 Apr; 32(4):2693-2703. PubMed ID: 34807270 [TBL] [Abstract][Full Text] [Related]
25. A PET/CT nomogram incorporating SUVmax and CT radiomics for preoperative nodal staging in non-small cell lung cancer. Xie Y; Zhao H; Guo Y; Meng F; Liu X; Zhang Y; Huai X; Wong Q; Fu Y; Zhang H Eur Radiol; 2021 Aug; 31(8):6030-6038. PubMed ID: 33560457 [TBL] [Abstract][Full Text] [Related]
27. Pre-treatment Ahn HK; Lee H; Kim SG; Hyun SH Clin Radiol; 2019 Jun; 74(6):467-473. PubMed ID: 30898382 [TBL] [Abstract][Full Text] [Related]
28. Development and validation of a Liu H; Cui Y; Chang C; Zhou Z; Zhang Y; Ma C; Yin Y; Wang R BMC Cancer; 2024 Jan; 24(1):150. PubMed ID: 38291351 [TBL] [Abstract][Full Text] [Related]
29. Hu S; Kang Y; Xie Y; Yang T; Yang Y; Jiao J; Zou Q; Zhang H; Zhang Y Abdom Radiol (NY); 2023 Feb; 48(2):532-542. PubMed ID: 36370179 [TBL] [Abstract][Full Text] [Related]
30. A Machine Learning Approach Using PET/CT-based Radiomics for Prediction of PD-L1 Expression in Non-small Cell Lung Cancer. Lim CH; Koh YW; Hyun SH; Lee SJ Anticancer Res; 2022 Dec; 42(12):5875-5884. PubMed ID: 36456151 [TBL] [Abstract][Full Text] [Related]
31. Preoperative prediction of regional lymph node metastasis of colorectal cancer based on He J; Wang Q; Zhang Y; Wu H; Zhou Y; Zhao S Ann Nucl Med; 2021 May; 35(5):617-627. PubMed ID: 33738763 [TBL] [Abstract][Full Text] [Related]
32. A clinically practical radiomics-clinical combined model based on PET/CT data and nomogram predicts EGFR mutation in lung adenocarcinoma. Chang C; Zhou S; Yu H; Zhao W; Ge Y; Duan S; Wang R; Qian X; Lei B; Wang L; Liu L; Ruan M; Yan H; Sun X; Xie W Eur Radiol; 2021 Aug; 31(8):6259-6268. PubMed ID: 33544167 [TBL] [Abstract][Full Text] [Related]
33. Next-Generation Radiogenomics Sequencing for Prediction of EGFR and KRAS Mutation Status in NSCLC Patients Using Multimodal Imaging and Machine Learning Algorithms. Shiri I; Maleki H; Hajianfar G; Abdollahi H; Ashrafinia S; Hatt M; Zaidi H; Oveisi M; Rahmim A Mol Imaging Biol; 2020 Aug; 22(4):1132-1148. PubMed ID: 32185618 [TBL] [Abstract][Full Text] [Related]
34. Combination of computed tomography imaging-based radiomics and clinicopathological characteristics for predicting the clinical benefits of immune checkpoint inhibitors in lung cancer. Yang B; Zhou L; Zhong J; Lv T; Li A; Ma L; Zhong J; Yin S; Huang L; Zhou C; Li X; Ge YQ; Tao X; Zhang L; Son Y; Lu G Respir Res; 2021 Jun; 22(1):189. PubMed ID: 34183009 [TBL] [Abstract][Full Text] [Related]
35. Machine learning predictive performance evaluation of conventional and fuzzy radiomics in clinical cancer imaging cohorts. Grahovac M; Spielvogel CP; Krajnc D; Ecsedi B; Traub-Weidinger T; Rasul S; Kluge K; Zhao M; Li X; Hacker M; Haug A; Papp L Eur J Nucl Med Mol Imaging; 2023 May; 50(6):1607-1620. PubMed ID: 36738311 [TBL] [Abstract][Full Text] [Related]
36. Development of a machine learning-based radiomics signature for estimating breast cancer TME phenotypes and predicting anti-PD-1/PD-L1 immunotherapy response. Han X; Guo Y; Ye H; Chen Z; Hu Q; Wei X; Liu Z; Liang C Breast Cancer Res; 2024 Jan; 26(1):18. PubMed ID: 38287356 [TBL] [Abstract][Full Text] [Related]
37. Predicting N2 lymph node metastasis in presurgical stage I-II non-small cell lung cancer using multiview radiomics and deep learning method. Zhang H; Liao M; Guo Q; Chen J; Wang S; Liu S; Xiao F Med Phys; 2023 Apr; 50(4):2049-2060. PubMed ID: 36563341 [TBL] [Abstract][Full Text] [Related]
38. Application of 18F-FDG PET/CT imaging radiomics in the differential diagnosis of single-nodule pulmonary metastases and second primary lung cancer in patients with colorectal cancer. Yu Y; Zhu J; Sang S; Yang Y; Zhang B; Deng S J Cancer Res Ther; 2024 Apr; 20(2):599-607. PubMed ID: 38687930 [TBL] [Abstract][Full Text] [Related]
39. Body Composition and Radiomics From 18 F-FDG PET/CT Together Help Predict Prognosis for Patients With Stage IV Non-Small Cell Lung Cancer. Zhang Y; Tan W; Zheng Z; Wang J; Xing L; Sun X J Comput Assist Tomogr; 2023 Nov-Dec 01; 47(6):906-912. PubMed ID: 37948365 [TBL] [Abstract][Full Text] [Related]
40. A machine learning tool to improve prediction of mediastinal lymph node metastases in non-small cell lung cancer using routinely obtainable [ Rogasch JMM; Michaels L; Baumgärtner GL; Frost N; Rückert JC; Neudecker J; Ochsenreither S; Gerhold M; Schmidt B; Schneider P; Amthauer H; Furth C; Penzkofer T Eur J Nucl Med Mol Imaging; 2023 Jun; 50(7):2140-2151. PubMed ID: 36820890 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]