These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
193 related articles for article (PubMed ID: 35572647)
21. Examination of Xenorhabdus nematophila lipases in pathogenic and mutualistic host interactions reveals a role for xlpA in nematode progeny production. Richards GR; Goodrich-Blair H Appl Environ Microbiol; 2010 Jan; 76(1):221-9. PubMed ID: 19880652 [TBL] [Abstract][Full Text] [Related]
22. Influence of nematode age and culture conditions on morphological and physiological parameters in the bacterial vesicle of Steinernema carpocapsae (Nematoda: Steinernematidae). Flores-Lara Y; Renneckar D; Forst S; Goodrich-Blair H; Stock P J Invertebr Pathol; 2007 Jun; 95(2):110-8. PubMed ID: 17376477 [TBL] [Abstract][Full Text] [Related]
23. They've got a ticket to ride: Xenorhabdus nematophila-Steinernema carpocapsae symbiosis. Goodrich-Blair H Curr Opin Microbiol; 2007 Jun; 10(3):225-30. PubMed ID: 17553732 [TBL] [Abstract][Full Text] [Related]
24. An improved method for generating axenic entomopathogenic nematodes. Yadav S; Shokal U; Forst S; Eleftherianos I BMC Res Notes; 2015 Sep; 8():461. PubMed ID: 26386557 [TBL] [Abstract][Full Text] [Related]
25. Pyrimidine nucleoside salvage confers an advantage to Xenorhabdus nematophila in its host interactions. Orchard SS; Goodrich-Blair H Appl Environ Microbiol; 2005 Oct; 71(10):6254-9. PubMed ID: 16204546 [TBL] [Abstract][Full Text] [Related]
26. Effect of phenotypic variation in Xenorhabdus nematophila on its mutualistic relationship with the entomopathogenic nematode Steinernema carpocapsae. Sicard M; Tabart J; Boemare NE; Thaler O; Moulia C Parasitology; 2005 Nov; 131(Pt 5):687-94. PubMed ID: 16255827 [TBL] [Abstract][Full Text] [Related]
27. Role of Mrx fimbriae of Xenorhabdus nematophila in competitive colonization of the nematode host. Snyder H; He H; Owen H; Hanna C; Forst S Appl Environ Microbiol; 2011 Oct; 77(20):7247-54. PubMed ID: 21856828 [TBL] [Abstract][Full Text] [Related]
28. In Vivo Effects of A Pro-PO System Inhibitor on the Phagocytosis of De Lerma Barbaro A; Gariboldi MB; Mastore M; Brivio MF; Giovannardi S Insects; 2019 Aug; 10(9):. PubMed ID: 31443446 [No Abstract] [Full Text] [Related]
29. Effects of an entomopathogen nematode on the immune response of the insect pest red palm weevil: Focus on the host antimicrobial response. Binda-Rossetti S; Mastore M; Protasoni M; Brivio MF J Invertebr Pathol; 2016 Jan; 133():110-9. PubMed ID: 26549224 [TBL] [Abstract][Full Text] [Related]
30. Visualizing bacteria in nematodes using fluorescent microscopy. Murfin KE; Chaston J; Goodrich-Blair H J Vis Exp; 2012 Oct; (68):. PubMed ID: 23117838 [TBL] [Abstract][Full Text] [Related]
32. Effect of heat sterilization on the bioactivity of antibacterial metabolites secreted by Xenorhabdus nematophila. Inman FL; Holmes L Pak J Biol Sci; 2012 Oct; 15(20):997-1000. PubMed ID: 24199479 [TBL] [Abstract][Full Text] [Related]
33. Influence of Xenorhabdus (Gamma-Proteobacteria: Enterobacteriaceae) symbionts on gonad postembryonic development in Steinernema (Nematoda: Steinernematidae) nematodes. Roder AC; Stock SP J Invertebr Pathol; 2018 Mar; 153():65-74. PubMed ID: 29458072 [TBL] [Abstract][Full Text] [Related]
34. Bacterial hemophilin homologs and their specific type eleven secretor proteins have conserved roles in heme capture and are diversifying as a family. Grossman AS; Gell DA; Wu DG; Carper DL; Hettich RL; Goodrich-Blair H J Bacteriol; 2024 Jun; 206(6):e0044423. PubMed ID: 38506530 [TBL] [Abstract][Full Text] [Related]
35. The xnp1 P2-like tail synthesis gene cluster encodes xenorhabdicin and is required for interspecies competition. Morales-Soto N; Forst SA J Bacteriol; 2011 Jul; 193(14):3624-32. PubMed ID: 21602326 [TBL] [Abstract][Full Text] [Related]
36. The global regulator Lrp contributes to mutualism, pathogenesis and phenotypic variation in the bacterium Xenorhabdus nematophila. Cowles KN; Cowles CE; Richards GR; Martens EC; Goodrich-Blair H Cell Microbiol; 2007 May; 9(5):1311-23. PubMed ID: 17223926 [TBL] [Abstract][Full Text] [Related]
37. Potentiating effect of Bacillus thuringiensis subsp. kurstaki on pathogenicity of entomopathogenic bacterium Xenorhabdus nematophila K1 against diamondback moth (Lepidoptera: Plutellidae). Jung SC; Kim YG J Econ Entomol; 2007 Feb; 100(1):246-50. PubMed ID: 17370835 [TBL] [Abstract][Full Text] [Related]
38. Identification and functional characterization of a Xenorhabdus nematophila oligopeptide permease. Orchard SS; Goodrich-Blair H Appl Environ Microbiol; 2004 Sep; 70(9):5621-7. PubMed ID: 15345451 [TBL] [Abstract][Full Text] [Related]
39. Stages of infection during the tripartite interaction between Xenorhabdus nematophila, its nematode vector, and insect hosts. Sicard M; Brugirard-Ricaud K; Pagès S; Lanois A; Boemare NE; Brehélin M; Givaudan A Appl Environ Microbiol; 2004 Nov; 70(11):6473-80. PubMed ID: 15528508 [TBL] [Abstract][Full Text] [Related]
40. Type 1 fimbriae of insecticidal bacterium Xenorhabdus nematophila is necessary for growth and colonization of its symbiotic host nematode Steinernema carpocapsiae. Chandra H; Khandelwal P; Khattri A; Banerjee N Environ Microbiol; 2008 May; 10(5):1285-95. PubMed ID: 18279345 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]