These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 35573028)

  • 1. A Survey Towards Decision Support System on Smart Irrigation Scheduling Using Machine Learning approaches.
    Saggi MK; Jain S
    Arch Comput Methods Eng; 2022; 29(6):4455-4478. PubMed ID: 35573028
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Experimental Comparison of IoT-Based and Traditional Irrigation Scheduling on a Flood-Irrigated Subtropical Lemon Farm.
    Zia H; Rehman A; Harris NR; Fatima S; Khurram M
    Sensors (Basel); 2021 Jun; 21(12):. PubMed ID: 34204584
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determination of crop coefficient for chufa crop (Cyperus esculentus L. var. sativus Boeck.) for sustainable irrigation scheduling.
    Pascual-Seva N; Pascual B
    Sci Total Environ; 2021 May; 768():144975. PubMed ID: 33736307
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Smart irrigation system for environmental sustainability in Africa: An Internet of Everything (IoE) approach.
    Adenugba F; Misra S; Maskeliūnas R; Damaševičius R; Kazanavičius E
    Math Biosci Eng; 2019 Jun; 16(5):5490-5503. PubMed ID: 31499722
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Smart & Green: An Internet-of-Things Framework for Smart Irrigation.
    G S Campos N; Rocha AR; Gondim R; Coelho da Silva TL; Gomes DG
    Sensors (Basel); 2019 Dec; 20(1):. PubMed ID: 31905749
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient IoT-Based Control for a Smart Subsurface Irrigation System to Enhance Irrigation Management of Date Palm.
    Mohammed M; Riad K; Alqahtani N
    Sensors (Basel); 2021 Jun; 21(12):. PubMed ID: 34201041
    [TBL] [Abstract][Full Text] [Related]  

  • 7. IoT-Based Smart Irrigation Systems: An Overview on the Recent Trends on Sensors and IoT Systems for Irrigation in Precision Agriculture.
    García L; Parra L; Jimenez JM; Lloret J; Lorenz P
    Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32075172
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ASAS-NANP symposium: mathematical modeling in animal nutrition: the progression of data analytics and artificial intelligence in support of sustainable development in animal science.
    Tedeschi LO
    J Anim Sci; 2022 Jun; 100(6):. PubMed ID: 35412610
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Root zone sensors for irrigation management in intensive agriculture.
    Pardossi A; Incrocci L; Incrocci G; Malorgio F; Battista P; Bacci L; Rapi B; Marzialetti P; Hemming J; Balendonck J
    Sensors (Basel); 2009; 9(4):2809-35. PubMed ID: 22574047
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integrated assessment of policy interventions for promoting sustainable irrigation in semi-arid environments: a hydro-economic modeling approach.
    Blanco-Gutiérrez I; Varela-Ortega C; Purkey DR
    J Environ Manage; 2013 Oct; 128():144-60. PubMed ID: 23732193
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sensor feedback system enables automated deficit irrigation scheduling for cotton.
    O'Shaughnessy SA; Colaizzi PD; Bednarz CW
    Front Plant Sci; 2023; 14():1149424. PubMed ID: 36968387
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic Neural Network Modelling of Soil Moisture Content for Predictive Irrigation Scheduling.
    Adeyemi O; Grove I; Peets S; Domun Y; Norton T
    Sensors (Basel); 2018 Oct; 18(10):. PubMed ID: 30314346
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Review: Synergy between mechanistic modelling and data-driven models for modern animal production systems in the era of big data.
    Ellis JL; Jacobs M; Dijkstra J; van Laar H; Cant JP; Tulpan D; Ferguson N
    Animal; 2020 Aug; 14(S2):s223-s237. PubMed ID: 32141423
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Toward the Next Generation of Digitalization in Agriculture Based on Digital Twin Paradigm.
    Nasirahmadi A; Hensel O
    Sensors (Basel); 2022 Jan; 22(2):. PubMed ID: 35062459
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling of an irrigation system in a virtual physical space.
    Glushkova T; Stoyanov S; Doukovska L; Todorov J; Stoyanov I
    Math Biosci Eng; 2021 Aug; 18(5):6841-6856. PubMed ID: 34517560
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Smart water management framework for irrigation in agriculture.
    Bhardwaj A; Kumar M; Alshehri M; Keshta I; Abugabah A; Sharma SK
    Environ Technol; 2024 May; 45(12):2320-2334. PubMed ID: 35129073
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A hybrid machine learning approach for estimating the water-use efficiency and yield in agriculture.
    Dehghanisanij H; Emami H; Emami S; Rezaverdinejad V
    Sci Rep; 2022 Apr; 12(1):6728. PubMed ID: 35469053
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Climate-resilient strategies for sustainable management of water resources and agriculture.
    Srivastav AL; Dhyani R; Ranjan M; Madhav S; Sillanpää M
    Environ Sci Pollut Res Int; 2021 Aug; 28(31):41576-41595. PubMed ID: 34097218
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimal irrigation planning for addressing current or future water scarcity in Mediterranean tree crops.
    Kourgialas NN; Koubouris GC; Dokou Z
    Sci Total Environ; 2019 Mar; 654():616-632. PubMed ID: 30447600
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Machine Learning in Agriculture: A Review.
    Liakos KG; Busato P; Moshou D; Pearson S; Bochtis D
    Sensors (Basel); 2018 Aug; 18(8):. PubMed ID: 30110960
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.