These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 35573030)

  • 1. In situ Thermoreflectance Characterization of Thermal Resistance in Multilayer Electronics Packaging.
    Poopakdee N; Abdallah Z; Pomeroy JW; Kuball M
    ACS Appl Electron Mater; 2022 Apr; 4(4):1558-1566. PubMed ID: 35573030
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ga
    Song Y; Shoemaker D; Leach JH; McGray C; Huang HL; Bhattacharyya A; Zhang Y; Gonzalez-Valle CU; Hess T; Zhukovsky S; Ferri K; Lavelle RM; Perez C; Snyder DW; Maria JP; Ramos-Alvarado B; Wang X; Krishnamoorthy S; Hwang J; Foley BM; Choi S
    ACS Appl Mater Interfaces; 2021 Sep; 13(34):40817-40829. PubMed ID: 34470105
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermal interface material with graphene enhanced sintered copper for high temperature power electronics.
    Deng S; Zhang X; Xiao GD; Zhang K; He X; Xin S; Liu X; Zhong A; Chai Y
    Nanotechnology; 2021 May; 32(31):. PubMed ID: 33910177
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Probing Growth-Induced Anisotropic Thermal Transport in High-Quality CVD Diamond Membranes by Multifrequency and Multiple-Spot-Size Time-Domain Thermoreflectance.
    Cheng Z; Bougher T; Bai T; Wang SY; Li C; Yates L; Foley BM; Goorsky M; Cola BA; Faili F; Graham S
    ACS Appl Mater Interfaces; 2018 Feb; 10(5):4808-4815. PubMed ID: 29328632
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Record-Low Thermal Boundary Resistance between Diamond and GaN-on-SiC for Enabling Radiofrequency Device Cooling.
    Malakoutian M; Field DE; Hines NJ; Pasayat S; Graham S; Kuball M; Chowdhury S
    ACS Appl Mater Interfaces; 2021 Dec; 13(50):60553-60560. PubMed ID: 34875169
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Frequency domain thermoreflectance technique for measuring the thermal conductivity of individual micro-particles.
    Goni M; Patelka M; Ikeda S; Sato T; Schmidt AJ
    Rev Sci Instrum; 2018 Jul; 89(7):074901. PubMed ID: 30068113
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interfacial Thermal Conductance across Room-Temperature-Bonded GaN/Diamond Interfaces for GaN-on-Diamond Devices.
    Cheng Z; Mu F; Yates L; Suga T; Graham S
    ACS Appl Mater Interfaces; 2020 Feb; 12(7):8376-8384. PubMed ID: 31986013
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulated Interfacial Thermal Conductance between Cu and Diamond by a TiC Interlayer for Thermal Management Applications.
    Chang G; Sun F; Wang L; Che Z; Wang X; Wang J; Kim MJ; Zhang H
    ACS Appl Mater Interfaces; 2019 Jul; 11(29):26507-26517. PubMed ID: 31283161
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Steady-state low thermal resistance characterization apparatus: The bulk thermal tester.
    Burg BR; Kolly M; Blasakis N; Gschwend D; Zürcher J; Brunschwiler T
    Rev Sci Instrum; 2015 Dec; 86(12):124903. PubMed ID: 26724058
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Instrumentation of broadband frequency domain thermoreflectance for measuring thermal conductivity accumulation functions.
    Regner KT; Majumdar S; Malen JA
    Rev Sci Instrum; 2013 Jun; 84(6):064901. PubMed ID: 23822366
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High Thermal Conductivity of Sandwich-Structured Flexible Thermal Interface Materials.
    Jing L; Cheng R; Tasoglu M; Wang Z; Wang Q; Zhai H; Shen S; Cohen-Karni T; Garg R; Lee I
    Small; 2023 Mar; 19(11):e2207015. PubMed ID: 36642828
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simultaneous measurement of thermal conductivity and heat capacity of bulk and thin film materials using frequency-dependent transient thermoreflectance method.
    Liu J; Zhu J; Tian M; Gu X; Schmidt A; Yang R
    Rev Sci Instrum; 2013 Mar; 84(3):034902. PubMed ID: 23556838
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantifying thermal transport in buried semiconductor nanostructures via cross-sectional scanning thermal microscopy.
    Spièce J; Evangeli C; Robson AJ; El Sachat A; Haenel L; Alonso MI; Garriga M; Robinson BJ; Oehme M; Schulze J; Alzina F; Sotomayor Torres C; Kolosov OV
    Nanoscale; 2021 Jun; 13(24):10829-10836. PubMed ID: 34114577
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancement of Thermal Boundary Conductance of Metal-Polymer System.
    Sandell S; Maire J; Chávez-Ángel E; Torres CMS; Kristiansen H; Zhang Z; He J
    Nanomaterials (Basel); 2020 Apr; 10(4):. PubMed ID: 32252435
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of interface thermal boundary resistance in the overall thermal conductivity of Si-Ge multilayered structures.
    Samvedi V; Tomar V
    Nanotechnology; 2009 Sep; 20(36):365701. PubMed ID: 19687536
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Barrier-Layer Optimization for Enhanced GaN-on-Diamond Device Cooling.
    Zhou Y; Anaya J; Pomeroy J; Sun H; Gu X; Xie A; Beam E; Becker M; Grotjohn TA; Lee C; Kuball M
    ACS Appl Mater Interfaces; 2017 Oct; 9(39):34416-34422. PubMed ID: 28901127
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High resolution steady-state measurements of thermal contact resistance across thermal interface material junctions.
    Warzoha RJ; Donovan BF
    Rev Sci Instrum; 2017 Sep; 88(9):094901. PubMed ID: 28964213
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High Thermal Boundary Conductance across Bonded Heterogeneous GaN-SiC Interfaces.
    Mu F; Cheng Z; Shi J; Shin S; Xu B; Shiomi J; Graham S; Suga T
    ACS Appl Mater Interfaces; 2019 Sep; 11(36):33428-33434. PubMed ID: 31408316
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bulk-like Intrinsic Phonon Thermal Conductivity of Micrometer-Thick AlN Films.
    Koh YR; Cheng Z; Mamun A; Bin Hoque MS; Liu Z; Bai T; Hussain K; Liao ME; Li R; Gaskins JT; Giri A; Tomko J; Braun JL; Gaevski M; Lee E; Yates L; Goorsky MS; Luo T; Khan A; Graham S; Hopkins PE
    ACS Appl Mater Interfaces; 2020 Jul; 12(26):29443-29450. PubMed ID: 32491824
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low Thermal Boundary Resistance Interfaces for GaN-on-Diamond Devices.
    Yates L; Anderson J; Gu X; Lee C; Bai T; Mecklenburg M; Aoki T; Goorsky MS; Kuball M; Piner EL; Graham S
    ACS Appl Mater Interfaces; 2018 Jul; 10(28):24302-24309. PubMed ID: 29939717
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.