These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 35573290)

  • 1. Modeling the Repetition-Based Recovering of Acoustic and Visual Sources With Dendritic Neurons.
    Dellaferrera G; Asabuki T; Fukai T
    Front Neurosci; 2022; 16():855753. PubMed ID: 35573290
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recovering sound sources from embedded repetition.
    McDermott JH; Wrobleski D; Oxenham AJ
    Proc Natl Acad Sci U S A; 2011 Jan; 108(3):1188-93. PubMed ID: 21199948
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unsupervised repetition enables rapid perceptual learning.
    Montazeri V; Kapolowicz MR; Assmann PF
    J Acoust Soc Am; 2021 Nov; 150(5):3964. PubMed ID: 34852622
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neural Decoding of Bistable Sounds Reveals an Effect of Intention on Perceptual Organization.
    Billig AJ; Davis MH; Carlyon RP
    J Neurosci; 2018 Mar; 38(11):2844-2853. PubMed ID: 29440556
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Perceptual learning of random acoustic patterns: Impact of temporal regularity and attention.
    Ringer H; Schröger E; Grimm S
    Eur J Neurosci; 2023 Jun; 57(12):2112-2135. PubMed ID: 37095717
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatiotemporal factors influence sound-source segregation in localization behavior.
    van Bentum GC; van Wanrooij MM; van Opstal AJ
    J Neurophysiol; 2021 Feb; 125(2):556-567. PubMed ID: 33378250
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of task-switching on neural representations of ambiguous sound input.
    Sussman ES; Bregman AS; Lee WW
    Neuropsychologia; 2014 Nov; 64():218-29. PubMed ID: 25281308
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Streaming of Repeated Noise in Primary and Secondary Fields of Auditory Cortex.
    Saderi D; Buran BN; David SV
    J Neurosci; 2020 May; 40(19):3783-3798. PubMed ID: 32273487
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Schema learning for the cocktail party problem.
    Woods KJP; McDermott JH
    Proc Natl Acad Sci U S A; 2018 Apr; 115(14):E3313-E3322. PubMed ID: 29563229
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sound segregation via embedded repetition is robust to inattention.
    Masutomi K; Barascud N; Kashino M; McDermott JH; Chait M
    J Exp Psychol Hum Percept Perform; 2016 Mar; 42(3):386-400. PubMed ID: 26480248
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acoustic Context Modulates Natural Sound Discrimination in Auditory Cortex through Frequency-Specific Adaptation.
    López-Jury L; García-Rosales F; González-Palomares E; Kössl M; Hechavarria JC
    J Neurosci; 2021 Dec; 41(50):10261-10277. PubMed ID: 34750226
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spike-timing-based computation in sound localization.
    Goodman DF; Brette R
    PLoS Comput Biol; 2010 Nov; 6(11):e1000993. PubMed ID: 21085681
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regularity extraction from non-adjacent sounds.
    Bendixen A; Schröger E; Ritter W; Winkler I
    Front Psychol; 2012; 3():143. PubMed ID: 22661959
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Noise-robust acoustic signature recognition using nonlinear Hebbian learning.
    Lu B; Dibazar A; Berger TW
    Neural Netw; 2010 Dec; 23(10):1252-63. PubMed ID: 20655704
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The impact of temporal fine structure and signal envelope on auditory motion perception.
    Warnecke M; Peng ZE; Litovsky RY
    PLoS One; 2020; 15(8):e0238125. PubMed ID: 32822439
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Auditory Selectivity for Spectral Contrast in Cortical Neurons and Behavior.
    So NLT; Edwards JA; Woolley SMN
    J Neurosci; 2020 Jan; 40(5):1015-1027. PubMed ID: 31826944
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neural Signatures of the Processing of Temporal Patterns in Sound.
    Herrmann B; Johnsrude IS
    J Neurosci; 2018 Jun; 38(24):5466-5477. PubMed ID: 29773757
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatial stream segregation by auditory cortical neurons.
    Middlebrooks JC; Bremen P
    J Neurosci; 2013 Jul; 33(27):10986-1001. PubMed ID: 23825404
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neural Correlates of Auditory Figure-Ground Segregation Based on Temporal Coherence.
    Teki S; Barascud N; Picard S; Payne C; Griffiths TD; Chait M
    Cereb Cortex; 2016 Sep; 26(9):3669-80. PubMed ID: 27325682
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A biologically oriented algorithm for spatial sound segregation.
    Chou KF; Boyd AD; Best V; Colburn HS; Sen K
    Front Neurosci; 2022; 16():1004071. PubMed ID: 36312015
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.