BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 35573293)

  • 1. Eye-Movements During Navigation in a Virtual Environment: Sex Differences and Relationship to Sex Hormones.
    Harris T; Hagg J; Pletzer B
    Front Neurosci; 2022; 16():755393. PubMed ID: 35573293
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Eye tracking, strategies, and sex differences in virtual navigation.
    Andersen NE; Dahmani L; Konishi K; Bohbot VD
    Neurobiol Learn Mem; 2012 Jan; 97(1):81-9. PubMed ID: 22001012
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Perspective and strategy interactively modulate sex differences in a 3D navigation task.
    Harris T; Scheuringer A; Pletzer B
    Biol Sex Differ; 2019 Apr; 10(1):17. PubMed ID: 30954081
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Navigation strategies in patients with vestibular loss tested in a virtual reality T-maze.
    Gammeri R; Léonard J; Toupet M; Hautefort C; van Nechel C; Besnard S; Machado ML; Nakul E; Montava M; Lavieille JP; Lopez C
    J Neurol; 2022 Aug; 269(8):4333-4348. PubMed ID: 35306619
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of Landmark Use for Navigation in Children: Effects of Age, Sex, Working Memory and Landmark Type.
    van Hoogmoed AH; Wegman J; van den Brink D; Janzen G
    Brain Sci; 2022 Jun; 12(6):. PubMed ID: 35741661
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vestibular damage affects the precision and accuracy of navigation in a virtual visual environment.
    Chari DA; Ahmad M; King S; Boutabla A; Fattahi C; Panic AS; Karmali F; Lewis RF
    Brain Commun; 2023; 5(6):fcad345. PubMed ID: 38116141
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Representation of visual landmarks in retrosplenial cortex.
    Fischer LF; Mojica Soto-Albors R; Buck F; Harnett MT
    Elife; 2020 Mar; 9():. PubMed ID: 32154781
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Local spatial navigation or "steering" in patients with vestibular loss in a virtual reality environment.
    Perez-Heydrich C; Pile M; Padova D; Cevallos A; Newman P; McNamara TP; Sayyid ZN; Agrawal Y
    J Vestib Res; 2023; 33(6):377-383. PubMed ID: 38073359
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sex and strategy effects on brain activation during a 3D-navigation task.
    Noachtar I; Harris TA; Hidalgo-Lopez E; Pletzer B
    Commun Biol; 2022 Mar; 5(1):234. PubMed ID: 35296794
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hippocampal Volume Reduction in Humans Predicts Impaired Allocentric Spatial Memory in Virtual-Reality Navigation.
    Guderian S; Dzieciol AM; Gadian DG; Jentschke S; Doeller CF; Burgess N; Mishkin M; Vargha-Khadem F
    J Neurosci; 2015 Oct; 35(42):14123-31. PubMed ID: 26490854
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigating the different domains of environmental knowledge acquired from virtual navigation and their relationship to cognitive factors and wayfinding inclinations.
    Muffato V; Miola L; Pellegrini M; Pazzaglia F; Meneghetti C
    Cogn Res Princ Implic; 2023 Aug; 8(1):50. PubMed ID: 37530868
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Finding landmarks - An investigation of viewing behavior during spatial navigation in VR using a graph-theoretical analysis approach.
    Walter JL; Essmann L; König SU; König P
    PLoS Comput Biol; 2022 Jun; 18(6):e1009485. PubMed ID: 35666726
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Testing Navigation in Real Space: Contributions to Understanding the Physiology and Pathology of Human Navigation Control.
    Schöberl F; Zwergal A; Brandt T
    Front Neural Circuits; 2020; 14():6. PubMed ID: 32210769
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sex Differences and Menstrual Cycle Dependent Changes in Cognitive Strategies during Spatial Navigation and Verbal Fluency.
    Scheuringer A; Pletzer B
    Front Psychol; 2017; 8():381. PubMed ID: 28367133
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of sex, menstrual cycle, and hormonal contraceptives on egocentric navigation with or without landmarks.
    Bernal A; Mateo-Martínez R; Paolieri D
    Psychoneuroendocrinology; 2020 Oct; 120():104768. PubMed ID: 32615391
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vestibular cues improve landmark-based route navigation: A simulated driving study.
    Jabbari Y; Kenney DM; von Mohrenschildt M; Shedden JM
    Mem Cognit; 2021 Nov; 49(8):1633-1644. PubMed ID: 34018119
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Route-learning strategies in typical and atypical development; eye tracking reveals atypical landmark selection in Williams syndrome.
    Farran EK; Formby S; Daniyal F; Holmes T; Van Herwegen J
    J Intellect Disabil Res; 2016 Oct; 60(10):933-44. PubMed ID: 27634746
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Perspective: Assessing the Flexible Acquisition, Integration, and Deployment of Human Spatial Representations and Information.
    Starrett MJ; Ekstrom AD
    Front Hum Neurosci; 2018; 12():281. PubMed ID: 30050422
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of Landmarks on Wayfinding and Brain Connectivity in Immersive Virtual Reality Environment.
    Sharma G; Kaushal Y; Chandra S; Singh V; Mittal AP; Dutt V
    Front Psychol; 2017; 8():1220. PubMed ID: 28775698
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Testing landmark-specific effects on route navigation in an ecologically valid setting: a simulated driving study.
    Jabbari Y; Kenney DM; von Mohrenschildt M; Shedden JM
    Cogn Res Princ Implic; 2022 Mar; 7(1):22. PubMed ID: 35254563
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.