These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Synaptotagmin-1- and Synaptotagmin-7-Dependent Fusion Mechanisms Target Synaptic Vesicles to Kinetically Distinct Endocytic Pathways. Li YC; Chanaday NL; Xu W; Kavalali ET Neuron; 2017 Feb; 93(3):616-631.e3. PubMed ID: 28111077 [TBL] [Abstract][Full Text] [Related]
7. Silencing diacylglycerol kinase-theta expression reduces steroid hormone biosynthesis and cholesterol metabolism in human adrenocortical cells. Cai K; Lucki NC; Sewer MB Biochim Biophys Acta; 2014 Apr; 1841(4):552-62. PubMed ID: 24369117 [TBL] [Abstract][Full Text] [Related]
8. Modulation of diacylglycerol kinase theta activity by alpha-thrombin and phospholipids. Tu-Sekine B; Ostroski M; Raben DM Biochemistry; 2007 Jan; 46(3):924-32. PubMed ID: 17223715 [TBL] [Abstract][Full Text] [Related]
9. SGIP1α functions as a selective endocytic adaptor for the internalization of synaptotagmin 1 at synapses. Lee SE; Jeong S; Lee U; Chang S Mol Brain; 2019 May; 12(1):41. PubMed ID: 31053155 [TBL] [Abstract][Full Text] [Related]
10. Diacylglycerol kinase θ couples farnesoid X receptor-dependent bile acid signalling to Akt activation and glucose homoeostasis in hepatocytes. Cai K; Sewer MB Biochem J; 2013 Sep; 454(2):267-74. PubMed ID: 23767959 [TBL] [Abstract][Full Text] [Related]
11. Diacylglycerol kinase theta binds to and is negatively regulated by active RhoA. Houssa B; de Widt J; Kranenburg O; Moolenaar WH; van Blitterswijk WJ J Biol Chem; 1999 Mar; 274(11):6820-2. PubMed ID: 10066731 [TBL] [Abstract][Full Text] [Related]
12. Diacylglycerol kinase theta is translocated and phosphoinositide 3-kinase-dependently activated by noradrenaline but not angiotensin II in intact small arteries. Walker AJ; Draeger A; Houssa B; van Blitterswijk WJ; Ohanian V; Ohanian J Biochem J; 2001 Jan; 353(Pt 1):129-137. PubMed ID: 11115406 [TBL] [Abstract][Full Text] [Related]
13. Synaptic vesicle pool-specific modification of neurotransmitter release by intravesicular free radical generation. Afuwape OA; Wasser CR; Schikorski T; Kavalali ET J Physiol; 2017 Feb; 595(4):1223-1238. PubMed ID: 27723113 [TBL] [Abstract][Full Text] [Related]
14. cAMP-stimulated transcription of DGKθ requires steroidogenic factor 1 and sterol regulatory element binding protein 1. Cai K; Sewer MB J Lipid Res; 2013 Aug; 54(8):2121-2132. PubMed ID: 23610160 [TBL] [Abstract][Full Text] [Related]
15. Cloning of a novel human diacylglycerol kinase (DGKtheta) containing three cysteine-rich domains, a proline-rich region, and a pleckstrin homology domain with an overlapping Ras-associating domain. Houssa B; Schaap D; van der Wal J; Goto K; Kondo H; Yamakawa A; Shibata M; Takenawa T; van Blitterswijk WJ J Biol Chem; 1997 Apr; 272(16):10422-8. PubMed ID: 9099683 [TBL] [Abstract][Full Text] [Related]
16. Establishment of a DGKθ Endogenous Promoter Luciferase Reporter HepG2 Cell Line for Studying the Transcriptional Regulation of DGKθ Gene. Shan L; Wang D; Mao Q; Xia H Appl Biochem Biotechnol; 2019 Apr; 187(4):1344-1355. PubMed ID: 30229432 [TBL] [Abstract][Full Text] [Related]
18. Deconstructing Synaptotagmin-1's Distinct Roles in Synaptic Vesicle Priming and Neurotransmitter Release. Bouazza-Arostegui B; Camacho M; Brockmann MM; Zobel S; Rosenmund C J Neurosci; 2022 Apr; 42(14):2856-2871. PubMed ID: 35193927 [TBL] [Abstract][Full Text] [Related]
19. Transmembrane tethering of synaptotagmin to synaptic vesicles controls multiple modes of neurotransmitter release. Lee J; Littleton JT Proc Natl Acad Sci U S A; 2015 Mar; 112(12):3793-8. PubMed ID: 25775572 [TBL] [Abstract][Full Text] [Related]
20. Rutaecarpin reduces lipids by DGKθ-dependent activation of PPARα. Wu D; Wang J; Chang Y; Zhang S; Liang J; Zhao J; Yang P; Mao Q; Xia H Obesity (Silver Spring); 2022 Dec; 30(12):2424-2439. PubMed ID: 36415997 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]