These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 35574068)

  • 1. Transcriptomic and Metabolomic Analyses Reveal a Potential Mechanism to Improve Soybean Resistance to Anthracnose.
    Zhu L; Yang Q; Yu X; Fu X; Jin H; Yuan F
    Front Plant Sci; 2022; 13():850829. PubMed ID: 35574068
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative transcriptomic provides novel insights into the soybean response to
    Boufleur TR; Massola Júnior NS; Becerra S; Baraldi E; Bibiano LBJ; Sukno SA; Thon MR; Baroncelli R
    Front Plant Sci; 2022; 13():1046418. PubMed ID: 36507428
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development and Application of an In Vitro Method to Evaluate Anthracnose Resistance in Soybean Germplasm.
    Zhu L; Feng L; Yu X; Fu X; Yang Q; Jin H; Yuan F
    Plants (Basel); 2022 Feb; 11(5):. PubMed ID: 35270127
    [TBL] [Abstract][Full Text] [Related]  

  • 4. First Report of Anthracnose Caused by Colletotrichum gloeosporioides on Soybean (Glycine max) in Malaysia.
    Mahmodi F; Kadir JB; Wong MY; Nasehi A; Puteh A; Soleimani N
    Plant Dis; 2013 Jun; 97(6):841. PubMed ID: 30722625
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Field-Relevant New Sources of Resistance to Anthracnose Caused by
    Pandey AK; Basandrai AK; Basandrai D; Boddepalli VN; Rathore A; Adapala G; Nair RM
    Plant Dis; 2021 Jul; 105(7):2001-2010. PubMed ID: 33599514
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Survival of
    Tikami Í; Boufleur TR; Prataviera F; Panciera LG; Neves VH; Ciampi-Guillardi M; Massola Júnior NS
    Plant Dis; 2023 Aug; 107(8):2460-2466. PubMed ID: 36723961
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Soybean anthracnose caused by Colletotrichum species: Current status and future prospects.
    Boufleur TR; Ciampi-Guillardi M; Tikami Í; Rogério F; Thon MR; Sukno SA; Massola Júnior NS; Baroncelli R
    Mol Plant Pathol; 2021 Apr; 22(4):393-409. PubMed ID: 33609073
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Current Status of Soybean Anthracnose Associated with
    Dias MD; Dias-Neto JJ; Santos MDM; Formento AN; Bizerra LVAS; Fonseca MEN; Boiteux LS; Café-Filho AC
    Plants (Basel); 2019 Oct; 8(11):. PubMed ID: 31671821
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of Lens culinaris defense genes responsive to the anthracnose pathogen Colletotrichum truncatum.
    Bhadauria V; Bett KE; Zhou T; Vandenberg A; Wei Y; Banniza S
    BMC Genet; 2013 Apr; 14():31. PubMed ID: 23631759
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification and Comparison of
    Boufleur TR; Massola Júnior NS; Tikami Í; Sukno SA; Thon MR; Baroncelli R
    Pathogens; 2021 Nov; 10(11):. PubMed ID: 34832675
    [No Abstract]   [Full Text] [Related]  

  • 11. Phylogeny and variability of Colletotrichum truncatum associated with soybean anthracnose in Brazil.
    Rogério F; Ciampi-Guillardi M; Barbieri MC; Bragança CA; Seixas CD; Almeida AM; Massola NS
    J Appl Microbiol; 2017 Feb; 122(2):402-415. PubMed ID: 27859958
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative transcriptomic and metabolic analysis reveals the effect of melatonin on delaying anthracnose incidence upon postharvest banana fruit peel.
    Li T; Wu Q; Zhu H; Zhou Y; Jiang Y; Gao H; Yun Z
    BMC Plant Biol; 2019 Jul; 19(1):289. PubMed ID: 31262259
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of the Difenoconazole-Resistance Risk and Its Molecular Basis in
    Shi N; Qiu D; Chen F; Yang YQ; Du Y
    Plant Dis; 2023 Oct; 107(10):3123-3130. PubMed ID: 37172974
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Field Resistance to
    Soto N; Hernández Y; Delgado C; Rosabal Y; Ortiz R; Valencia L; Borrás-Hidalgo O; Pujol M; Enríquez GA
    Front Plant Sci; 2020; 11():562. PubMed ID: 32528487
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of
    Li J; Xiong C; Ruan D; Du W; Li H; Ruan C
    Front Plant Sci; 2023; 14():1110366. PubMed ID: 36968410
    [No Abstract]   [Full Text] [Related]  

  • 16. Can-miRn37a mediated suppression of ethylene response factors enhances the resistance of chilli against anthracnose pathogen Colletotrichum truncatum L.
    Mishra R; Mohanty JN; Chand SK; Joshi RK
    Plant Sci; 2018 Feb; 267():135-147. PubMed ID: 29362092
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Methods and Evaluation of Soybean Genotypes for Resistance to Colletotrichum truncatum.
    Yang HC; Hartman GL
    Plant Dis; 2015 Jan; 99(1):143-148. PubMed ID: 30699740
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative transcriptomics and genomic analyses reveal differential gene expression related to
    Yang M; Zhou C; Yang H; Kuang R; Liu K; Huang B; Wei Y
    Front Plant Sci; 2022; 13():1038598. PubMed ID: 36618670
    [No Abstract]   [Full Text] [Related]  

  • 19. Inherent Resistance to 14α-Demethylation Inhibitor Fungicides in Colletotrichum truncatum Is Likely Linked to CYP51A and/or CYP51B Gene Variants.
    Chen S; Wang Y; Schnabel G; Peng CA; Lagishetty S; Smith K; Luo C; Yuan H
    Phytopathology; 2018 Nov; 108(11):1263-1275. PubMed ID: 29792573
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Colletotrichum incanum sp. nov., a curved-conidial species causing soybean anthracnose in USA.
    Yang HC; Haudenshield JS; Hartman GL
    Mycologia; 2014; 106(1):32-42. PubMed ID: 24603833
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.