BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 35574084)

  • 1. Interactions Between Carbon Metabolism and Photosynthetic Electron Transport in a
    Saint-Sorny M; Brzezowski P; Arrivault S; Alric J; Johnson X
    Front Plant Sci; 2022; 13():876439. PubMed ID: 35574084
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ribulose-1,5-bisphosphate regeneration in the Calvin-Benson-Bassham cycle: Focus on the last three enzymatic steps that allow the formation of Rubisco substrate.
    Meloni M; Gurrieri L; Fermani S; Velie L; Sparla F; Crozet P; Henri J; Zaffagnini M
    Front Plant Sci; 2023; 14():1130430. PubMed ID: 36875598
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integrative control of carbon, nitrogen, hydrogen, and sulfur metabolism: the central role of the Calvin-Benson-Bassham cycle.
    Laguna R; Joshi GS; Dangel AW; Luther AK; Tabita FR
    Adv Exp Med Biol; 2010; 675():265-71. PubMed ID: 20532746
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering the Calvin-Benson-Bassham cycle and hydrogen utilization pathway of Ralstonia eutropha for improved autotrophic growth and polyhydroxybutyrate production.
    Li Z; Xin X; Xiong B; Zhao D; Zhang X; Bi C
    Microb Cell Fact; 2020 Dec; 19(1):228. PubMed ID: 33308236
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modified pathway to synthesize ribulose 1,5-bisphosphate in methanogenic archaea.
    Finn MW; Tabita FR
    J Bacteriol; 2004 Oct; 186(19):6360-6. PubMed ID: 15375115
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Overexpression of bifunctional fructose-1,6-bisphosphatase/sedoheptulose-1,7-bisphosphatase leads to enhanced photosynthesis and global reprogramming of carbon metabolism in Synechococcus sp. PCC 7002.
    De Porcellinis AJ; Nørgaard H; Brey LMF; Erstad SM; Jones PR; Heazlewood JL; Sakuragi Y
    Metab Eng; 2018 May; 47():170-183. PubMed ID: 29510212
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The poor growth of Rhodospirillum rubrum mutants lacking RubisCO is due to the accumulation of ribulose-1,5-bisphosphate.
    Wang D; Zhang Y; Pohlmann EL; Li J; Roberts GP
    J Bacteriol; 2011 Jul; 193(13):3293-303. PubMed ID: 21531802
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO)-mediated de novo synthesis of glycolate-based polyhydroxyalkanoate in Escherichia coli.
    Matsumoto K; Saito J; Yokoo T; Hori C; Nagata A; Kudoh Y; Ooi T; Taguchi S
    J Biosci Bioeng; 2019 Sep; 128(3):302-306. PubMed ID: 30987875
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction between starch breakdown, acetate assimilation, and photosynthetic cyclic electron flow in Chlamydomonas reinhardtii.
    Johnson X; Alric J
    J Biol Chem; 2012 Jul; 287(31):26445-52. PubMed ID: 22692199
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rubisco Activases: AAA+ Chaperones Adapted to Enzyme Repair.
    Bhat JY; Thieulin-Pardo G; Hartl FU; Hayer-Hartl M
    Front Mol Biosci; 2017; 4():20. PubMed ID: 28443288
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential expression of the CO2 fixation operons of Rhodobacter sphaeroides by the Prr/Reg two-component system during chemoautotrophic growth.
    Gibson JL; Dubbs JM; Tabita FR
    J Bacteriol; 2002 Dec; 184(23):6654-64. PubMed ID: 12426354
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Yeast metabolic engineering for carbon dioxide fixation and its application.
    Rin Kim S; Kim SJ; Kim SK; Seo SO; Park S; Shin J; Kim JS; Park BR; Jin YS; Chang PS; Park YC
    Bioresour Technol; 2022 Feb; 346():126349. PubMed ID: 34800639
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In Situ Association of Calvin Cycle Enzymes, Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase Activase, Ferredoxin-NADP+ Reductase, and Nitrite Reductase with Thylakoid and Pyrenoid Membranes of Chlamydomonas reinhardtii Chloroplasts as Revealed by Immunoelectron Microscopy.
    Suss KH; Prokhorenko I; Adler K
    Plant Physiol; 1995 Apr; 107(4):1387-1397. PubMed ID: 12228443
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glycolytic Shunts Replenish the Calvin-Benson-Bassham Cycle as Anaplerotic Reactions in Cyanobacteria.
    Makowka A; Nichelmann L; Schulze D; Spengler K; Wittmann C; Forchhammer K; Gutekunst K
    Mol Plant; 2020 Mar; 13(3):471-482. PubMed ID: 32044444
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Form III RubisCO-mediated transaldolase variant of the Calvin cycle in a chemolithoautotrophic bacterium.
    Frolov EN; Kublanov IV; Toshchakov SV; Lunev EA; Pimenov NV; Bonch-Osmolovskaya EA; Lebedinsky AV; Chernyh NA
    Proc Natl Acad Sci U S A; 2019 Sep; 116(37):18638-18646. PubMed ID: 31451656
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystal structure of chloroplast fructose-1,6-bisphosphate aldolase from the green alga Chlamydomonas reinhardtii.
    Le Moigne T; Sarti E; Nourisson A; Zaffagnini M; Carbone A; Lemaire SD; Henri J
    J Struct Biol; 2022 Sep; 214(3):107873. PubMed ID: 35680033
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rubisco Function, Evolution, and Engineering.
    Prywes N; Phillips NR; Tuck OT; Valentin-Alvarado LE; Savage DF
    Annu Rev Biochem; 2023 Jun; 92():385-410. PubMed ID: 37127263
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detailed profiling of carbon fixation of
    Cheng HT; Lo SC; Huang CC; Ho TY; Yang YT
    Synth Syst Biotechnol; 2019 Sep; 4(3):165-172. PubMed ID: 31528741
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CbbR, the Master Regulator for Microbial Carbon Dioxide Fixation.
    Dangel AW; Tabita FR
    J Bacteriol; 2015 Nov; 197(22):3488-98. PubMed ID: 26324454
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural Perturbations of
    Satagopan S; North JA; Arbing MA; Varaljay VA; Haines SN; Wildenthal JA; Byerly KM; Shin A; Tabita FR
    Biochemistry; 2019 Sep; 58(37):3880-3892. PubMed ID: 31456394
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.