These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 35574145)

  • 1. A New Approach to Develop Resistant Cultivars Against the Plant Pathogens: CRISPR Drives.
    Tek MI; Budak K
    Front Plant Sci; 2022; 13():889497. PubMed ID: 35574145
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Knockout of elF4E using CRISPR/Cas9 for large-scale production of resistant cucumber cultivar against WMV, ZYMV, and PRSV.
    Fidan H; Calis O; Ari E; Atasayar A; Sarikaya P; Tek MI; Izmirli A; Oz Y; Firat G
    Front Plant Sci; 2023; 14():1143813. PubMed ID: 37008503
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome editing for resistance against plant pests and pathogens.
    Rato C; Carvalho MF; Azevedo C; Oblessuc PR
    Transgenic Res; 2021 Aug; 30(4):427-459. PubMed ID: 34143358
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A detailed landscape of CRISPR-Cas-mediated plant disease and pest management.
    Karmakar S; Das P; Panda D; Xie K; Baig MJ; Molla KA
    Plant Sci; 2022 Oct; 323():111376. PubMed ID: 35835393
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improving plant-resistance to insect-pests and pathogens: The new opportunities through targeted genome editing.
    Bisht DS; Bhatia V; Bhattacharya R
    Semin Cell Dev Biol; 2019 Dec; 96():65-76. PubMed ID: 31039395
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plant and Fungal Genome Editing to Enhance Plant Disease Resistance Using the CRISPR/Cas9 System.
    Paul NC; Park SW; Liu H; Choi S; Ma J; MacCready JS; Chilvers MI; Sang H
    Front Plant Sci; 2021; 12():700925. PubMed ID: 34447401
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient CRISPR/Cas9 Genome Editing of
    Odipio J; Alicai T; Ingelbrecht I; Nusinow DA; Bart R; Taylor NJ
    Front Plant Sci; 2017; 8():1780. PubMed ID: 29093724
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selective inheritance of target genes from only one parent of sexually reproduced F1 progeny in Arabidopsis.
    Zhang T; Mudgett M; Rambabu R; Abramson B; Dai X; Michael TP; Zhao Y
    Nat Commun; 2021 Jun; 12(1):3854. PubMed ID: 34158505
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gene drive: a faster route to plant improvement.
    Siddiqui HA; Harvey-Samuel T; Mansoor S
    Trends Plant Sci; 2021 Dec; 26(12):1204-1206. PubMed ID: 34625344
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CRISPR/Cas9-Based Knock-Out of the
    Li R; Maioli A; Yan Z; Bai Y; Valentino D; Milani AM; Pompili V; Comino C; Lanteri S; Moglia A; Acquadro A
    Int J Mol Sci; 2022 Nov; 23(23):. PubMed ID: 36498869
    [No Abstract]   [Full Text] [Related]  

  • 11. Gene drives in our future: challenges of and opportunities for using a self-sustaining technology in pest and vector management.
    Collins JP
    BMC Proc; 2018; 12(Suppl 8):9. PubMed ID: 30079101
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering canker-resistant plants through CRISPR/Cas9-targeted editing of the susceptibility gene CsLOB1 promoter in citrus.
    Peng A; Chen S; Lei T; Xu L; He Y; Wu L; Yao L; Zou X
    Plant Biotechnol J; 2017 Dec; 15(12):1509-1519. PubMed ID: 28371200
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CRISPR/Cas Genome Editing Technologies for Plant Improvement against Biotic and Abiotic Stresses: Advances, Limitations, and Future Perspectives.
    Wang Y; Zafar N; Ali Q; Manghwar H; Wang G; Yu L; Ding X; Ding F; Hong N; Wang G; Jin S
    Cells; 2022 Dec; 11(23):. PubMed ID: 36497186
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Generation of Gene Drive Mice for Invasive Pest Population Suppression.
    Bunting MD; Pfitzner C; Gierus L; White M; Piltz S; Thomas PQ
    Methods Mol Biol; 2022; 2495():203-230. PubMed ID: 35696035
    [TBL] [Abstract][Full Text] [Related]  

  • 15. State-of-the-Art in CRISPR Technology and Engineering Drought, Salinity, and Thermo-tolerant crop plants.
    Chennakesavulu K; Singh H; Trivedi PK; Jain M; Yadav SR
    Plant Cell Rep; 2022 Mar; 41(3):815-831. PubMed ID: 33742256
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CRISPR/Cas9 for development of disease resistance in plants: recent progress, limitations and future prospects.
    Ahmad S; Wei X; Sheng Z; Hu P; Tang S
    Brief Funct Genomics; 2020 Jan; 19(1):26-39. PubMed ID: 31915817
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sequence-specific nucleases as tools for enhancing disease resistance in crops.
    Nekrasov V
    Transgenic Res; 2019 Aug; 28(Suppl 2):75-80. PubMed ID: 31321687
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improvement and use of CRISPR/Cas9 to engineer a sperm-marking strain for the invasive fruit pest Drosophila suzukii.
    Ahmed HMM; Hildebrand L; Wimmer EA
    BMC Biotechnol; 2019 Dec; 19(1):85. PubMed ID: 31805916
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Achieving broad-spectrum resistance against rice bacterial blight through targeted promoter editing and pathogen population monitoring.
    Wang J; Ning Y; Gentzel IN; Wang GL
    aBIOTECH; 2020 Apr; 1(2):119-122. PubMed ID: 36304715
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Can CRISPR gene drive work in pest and beneficial haplodiploid species?
    Li J; Aidlin Harari O; Doss AL; Walling LL; Atkinson PW; Morin S; Tabashnik BE
    Evol Appl; 2020 Oct; 13(9):2392-2403. PubMed ID: 33005229
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.