These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 35574145)

  • 21. Emerging Genome Engineering Tools in Crop Research and Breeding.
    Bilichak A; Gaudet D; Laurie J
    Methods Mol Biol; 2020; 2072():165-181. PubMed ID: 31541446
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The genetic editing of
    Huang J; Gao L; Luo S; Liu K; Qing D; Pan Y; Dai G; Deng G; Zhu C
    Mol Breed; 2022 Apr; 42(4):22. PubMed ID: 37309462
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Beyond Mendelian Genetics: Anticipatory Biomedical Ethics and Policy Implications for the Use of CRISPR Together with Gene Drive in Humans.
    Nestor MW; Wilson RL
    J Bioeth Inq; 2020 Mar; 17(1):133-144. PubMed ID: 31900854
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Plant breeding advancements with "CRISPR-Cas" genome editing technologies will assist future food security.
    Ahmad M
    Front Plant Sci; 2023; 14():1133036. PubMed ID: 36993865
    [TBL] [Abstract][Full Text] [Related]  

  • 25. CRISPR/Cas-based tools for the targeted control of plant viruses.
    Robertson G; Burger J; Campa M
    Mol Plant Pathol; 2022 Nov; 23(11):1701-1718. PubMed ID: 35920132
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Reverse breeding in Arabidopsis thaliana generates homozygous parental lines from a heterozygous plant.
    Wijnker E; van Dun K; de Snoo CB; Lelivelt CL; Keurentjes JJ; Naharudin NS; Ravi M; Chan SW; de Jong H; Dirks R
    Nat Genet; 2012 Mar; 44(4):467-70. PubMed ID: 22406643
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Highly Efficient Generation of Canker-Resistant Sweet Orange Enabled by an Improved CRISPR/Cas9 System.
    Huang X; Wang Y; Wang N
    Front Plant Sci; 2021; 12():769907. PubMed ID: 35087548
    [TBL] [Abstract][Full Text] [Related]  

  • 28. CRISPR/Cas9-mediated phospholipase C 2 knock-out tomato plants are more resistant to Botrytis cinerea.
    Perk EA; Arruebarrena Di Palma A; Colman S; Mariani O; Cerrudo I; D'Ambrosio JM; Robuschi L; Pombo MA; Rosli HG; Villareal F; Laxalt AM
    Planta; 2023 May; 257(6):117. PubMed ID: 37173533
    [TBL] [Abstract][Full Text] [Related]  

  • 29. CRISPR Gene Drive Efficiency and Resistance Rate Is Highly Heritable with No Common Genetic Loci of Large Effect.
    Champer J; Wen Z; Luthra A; Reeves R; Chung J; Liu C; Lee YL; Liu J; Yang E; Messer PW; Clark AG
    Genetics; 2019 May; 212(1):333-341. PubMed ID: 30918006
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Integral gene drives for population replacement.
    Nash A; Urdaneta GM; Beaghton AK; Hoermann A; Papathanos PA; Christophides GK; Windbichler N
    Biol Open; 2019 Jan; 8(1):. PubMed ID: 30498016
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Genome Editing of Rice
    Wang W; Ma S; Hu P; Ji Y; Sun F
    Viruses; 2021 Oct; 13(10):. PubMed ID: 34696530
    [TBL] [Abstract][Full Text] [Related]  

  • 32. CRISPR/Cas9 to generate plant immunity against pathogen.
    Zaynab M; Sharif Y; Fatima M; Afzal MZ; Aslam MM; Raza MF; Anwar M; Raza MA; Sajjad N; Yang X; Li S
    Microb Pathog; 2020 Apr; 141():103996. PubMed ID: 31988004
    [TBL] [Abstract][Full Text] [Related]  

  • 33. CRISPR-Combo-mediated orthogonal genome editing and transcriptional activation for plant breeding.
    Pan C; Qi Y
    Nat Protoc; 2023 Jun; 18(6):1760-1794. PubMed ID: 37085666
    [TBL] [Abstract][Full Text] [Related]  

  • 34. VIGE: virus-induced genome editing for improving abiotic and biotic stress traits in plants.
    Gentzel IN; Ohlson EW; Redinbaugh MG; Wang GL
    Stress Biol; 2022 Jan; 2(1):2. PubMed ID: 37676518
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Advances in S gene targeted genome-editing and its applicability to disease resistance breeding in selected
    Barka GD; Lee J
    Bioengineered; 2022 Jun; 13(6):14646-14666. PubMed ID: 35891620
    [TBL] [Abstract][Full Text] [Related]  

  • 36. CRISPR Crops: Plant Genome Editing Toward Disease Resistance.
    Langner T; Kamoun S; Belhaj K
    Annu Rev Phytopathol; 2018 Aug; 56():479-512. PubMed ID: 29975607
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Efficient genome editing of wild strawberry genes, vector development and validation.
    Zhou J; Wang G; Liu Z
    Plant Biotechnol J; 2018 Nov; 16(11):1868-1877. PubMed ID: 29577545
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Generation of a new thermo-sensitive genic male sterile rice line by targeted mutagenesis of TMS5 gene through CRISPR/Cas9 system.
    Barman HN; Sheng Z; Fiaz S; Zhong M; Wu Y; Cai Y; Wang W; Jiao G; Tang S; Wei X; Hu P
    BMC Plant Biol; 2019 Mar; 19(1):109. PubMed ID: 30894127
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A multiplex CRISPR/Cas9 platform for fast and efficient editing of multiple genes in Arabidopsis.
    Zhang Z; Mao Y; Ha S; Liu W; Botella JR; Zhu JK
    Plant Cell Rep; 2016 Jul; 35(7):1519-33. PubMed ID: 26661595
    [TBL] [Abstract][Full Text] [Related]  

  • 40. CRISPR/Cas9 mediated genome editing tools and their possible role in disease resistance mechanism.
    Kumari D; Prasad BD; Dwivedi P; Hidangmayum A; Sahni S
    Mol Biol Rep; 2022 Dec; 49(12):11587-11600. PubMed ID: 36104588
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.