These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 35574228)

  • 1. A Survey of Multifingered Robotic Manipulation: Biological Results, Structural Evolvements, and Learning Methods.
    Li Y; Wang P; Li R; Tao M; Liu Z; Qiao H
    Front Neurorobot; 2022; 16():843267. PubMed ID: 35574228
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dexterous Manipulation for Multi-Fingered Robotic Hands With Reinforcement Learning: A Review.
    Yu C; Wang P
    Front Neurorobot; 2022; 16():861825. PubMed ID: 35548780
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multifingered Robot Hand Compliant Manipulation Based on Vision-Based Demonstration and Adaptive Force Control.
    Zeng C; Li S; Chen Z; Yang C; Sun F; Zhang J
    IEEE Trans Neural Netw Learn Syst; 2023 Sep; 34(9):5452-5463. PubMed ID: 35767493
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Review of Learning-Based Robotic Manipulation in Cluttered Environments.
    Mohammed MQ; Kwek LC; Chua SC; Al-Dhaqm A; Nahavandi S; Eisa TAE; Miskon MF; Al-Mhiqani MN; Ali A; Abaker M; Alandoli EA
    Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298284
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hierarchical Tactile-Based Control Decomposition of Dexterous In-Hand Manipulation Tasks.
    Veiga F; Akrour R; Peters J
    Front Robot AI; 2020; 7():521448. PubMed ID: 33501302
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The JamHand: Dexterous Manipulation with Minimal Actuation.
    Amend J; Lipson H
    Soft Robot; 2017 Mar; 4(1):70-80. PubMed ID: 29182098
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hand-Object Interaction: From Human Demonstrations to Robot Manipulation.
    Carfì A; Patten T; Kuang Y; Hammoud A; Alameh M; Maiettini E; Weinberg AI; Faria D; Mastrogiovanni F; Alenyà G; Natale L; Perdereau V; Vincze M; Billard A
    Front Robot AI; 2021; 8():714023. PubMed ID: 34660702
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimating the Orientation of Objects from Tactile Sensing Data Using Machine Learning Methods and Visual Frames of Reference.
    Prado da Fonseca V; Alves de Oliveira TE; Petriu EM
    Sensors (Basel); 2019 May; 19(10):. PubMed ID: 31108951
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling and Simulation of Robotic Grasping in Simulink Through Simscape Multibody.
    Pozzi M; Achilli GM; Valigi MC; Malvezzi M
    Front Robot AI; 2022; 9():873558. PubMed ID: 35712551
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A High-Efficient Reinforcement Learning Approach for Dexterous Manipulation.
    Zhang J; Zhou X; Zhou J; Qiu S; Liang G; Cai S; Bao G
    Biomimetics (Basel); 2023 Jun; 8(2):. PubMed ID: 37366859
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DeepClaw 2.0: A Data Collection Platform for Learning Human Manipulation.
    Wang H; Liu X; Qiu N; Guo N; Wan F; Song C
    Front Robot AI; 2022; 9():787291. PubMed ID: 35368430
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Survey on Deep Reinforcement Learning Algorithms for Robotic Manipulation.
    Han D; Mulyana B; Stankovic V; Cheng S
    Sensors (Basel); 2023 Apr; 23(7):. PubMed ID: 37050822
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tactile Transfer Learning and Object Recognition With a Multifingered Hand Using Morphology Specific Convolutional Neural Networks.
    Funabashi S; Yan G; Hongyi F; Schmitz A; Jamone L; Ogata T; Sugano S
    IEEE Trans Neural Netw Learn Syst; 2024 Jun; 35(6):7587-7601. PubMed ID: 36327180
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neural network control of multifingered robot hands using visual feedback.
    Zhao Y; Cheah CC
    IEEE Trans Neural Netw; 2009 May; 20(5):758-67. PubMed ID: 19369155
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bi-DexHands: Towards Human-Level Bimanual Dexterous Manipulation.
    Chen Y; Geng Y; Zhong F; Ji J; Jiang J; Lu Z; Dong H; Yang Y
    IEEE Trans Pattern Anal Mach Intell; 2024 May; 46(5):2804-2818. PubMed ID: 38051620
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hands in the Real World.
    Negrello F; Stuart HS; Catalano MG
    Front Robot AI; 2019; 6():147. PubMed ID: 33501162
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Control framework for dexterous manipulation using dynamic visual servoing and tactile sensors' feedback.
    Jara CA; Pomares J; Candelas FA; Torres F
    Sensors (Basel); 2014 Jan; 14(1):1787-804. PubMed ID: 24451466
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Grasping Force Control of Multi-Fingered Robotic Hands through Tactile Sensing for Object Stabilization.
    Deng Z; Jonetzko Y; Zhang L; Zhang J
    Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32075193
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrated linkage-driven dexterous anthropomorphic robotic hand.
    Kim U; Jung D; Jeong H; Park J; Jung HM; Cheong J; Choi HR; Do H; Park C
    Nat Commun; 2021 Dec; 12(1):7177. PubMed ID: 34907178
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simulative Evaluation of a Joint-Cartesian Hybrid Motion Mapping for Robot Hands Based on Spatial In-Hand Information.
    Meattini R; Chiaravalli D; Palli G; Melchiorri C
    Front Robot AI; 2022; 9():878364. PubMed ID: 35813853
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.