These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 35574400)

  • 1. Spherical Convolutional Neural Networks for Survival Rate Prediction in Cancer Patients.
    Sinzinger F; Astaraki M; Smedby Ö; Moreno R
    Front Oncol; 2022; 12():870457. PubMed ID: 35574400
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fully automatic multi-organ segmentation for head and neck cancer radiotherapy using shape representation model constrained fully convolutional neural networks.
    Tong N; Gou S; Yang S; Ruan D; Sheng K
    Med Phys; 2018 Oct; 45(10):4558-4567. PubMed ID: 30136285
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Shape constrained fully convolutional DenseNet with adversarial training for multiorgan segmentation on head and neck CT and low-field MR images.
    Tong N; Gou S; Yang S; Cao M; Sheng K
    Med Phys; 2019 Jun; 46(6):2669-2682. PubMed ID: 31002188
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep convolutional neural network for segmentation of thoracic organs-at-risk using cropped 3D images.
    Feng X; Qing K; Tustison NJ; Meyer CH; Chen Q
    Med Phys; 2019 May; 46(5):2169-2180. PubMed ID: 30830685
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two-stage deep learning model for fully automated pancreas segmentation on computed tomography: Comparison with intra-reader and inter-reader reliability at full and reduced radiation dose on an external dataset.
    Panda A; Korfiatis P; Suman G; Garg SK; Polley EC; Singh DP; Chari ST; Goenka AH
    Med Phys; 2021 May; 48(5):2468-2481. PubMed ID: 33595105
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automatic segmentation of the clinical target volume and organs at risk in the planning CT for rectal cancer using deep dilated convolutional neural networks.
    Men K; Dai J; Li Y
    Med Phys; 2017 Dec; 44(12):6377-6389. PubMed ID: 28963779
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improving motion-mask segmentation in thoracic CT with multiplanar U-nets.
    Penarrubia L; Pinon N; Roux E; Dávila Serrano EE; Richard JC; Orkisz M; Sarrut D
    Med Phys; 2022 Jan; 49(1):420-431. PubMed ID: 34778978
    [TBL] [Abstract][Full Text] [Related]  

  • 8. HFRU-Net: High-Level Feature Fusion and Recalibration UNet for Automatic Liver and Tumor Segmentation in CT Images.
    Kushnure DT; Talbar SN
    Comput Methods Programs Biomed; 2022 Jan; 213():106501. PubMed ID: 34752959
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automatic prostate segmentation using deep learning on clinically diverse 3D transrectal ultrasound images.
    Orlando N; Gillies DJ; Gyacskov I; Romagnoli C; D'Souza D; Fenster A
    Med Phys; 2020 Jun; 47(6):2413-2426. PubMed ID: 32166768
    [TBL] [Abstract][Full Text] [Related]  

  • 10. IBA-U-Net: Attentive BConvLSTM U-Net with Redesigned Inception for medical image segmentation.
    Chen S; Zou Y; Liu PX
    Comput Biol Med; 2021 Aug; 135():104551. PubMed ID: 34157471
    [TBL] [Abstract][Full Text] [Related]  

  • 11. U-Net based deep learning bladder segmentation in CT urography.
    Ma X; Hadjiiski LM; Wei J; Chan HP; Cha KH; Cohan RH; Caoili EM; Samala R; Zhou C; Lu Y
    Med Phys; 2019 Apr; 46(4):1752-1765. PubMed ID: 30734932
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatial aggregation of holistically-nested convolutional neural networks for automated pancreas localization and segmentation.
    Roth HR; Lu L; Lay N; Harrison AP; Farag A; Sohn A; Summers RM
    Med Image Anal; 2018 Apr; 45():94-107. PubMed ID: 29427897
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automatic Segmentation of Multiple Organs on 3D CT Images by Using Deep Learning Approaches.
    Zhou X
    Adv Exp Med Biol; 2020; 1213():135-147. PubMed ID: 32030668
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep learning of the sectional appearances of 3D CT images for anatomical structure segmentation based on an FCN voting method.
    Zhou X; Takayama R; Wang S; Hara T; Fujita H
    Med Phys; 2017 Oct; 44(10):5221-5233. PubMed ID: 28730602
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DENSE-INception U-net for medical image segmentation.
    Zhang Z; Wu C; Coleman S; Kerr D
    Comput Methods Programs Biomed; 2020 Aug; 192():105395. PubMed ID: 32163817
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lung Segmentation on HRCT and Volumetric CT for Diffuse Interstitial Lung Disease Using Deep Convolutional Neural Networks.
    Park B; Park H; Lee SM; Seo JB; Kim N
    J Digit Imaging; 2019 Dec; 32(6):1019-1026. PubMed ID: 31396776
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fully automated longitudinal segmentation of new or enlarged multiple sclerosis lesions using 3D convolutional neural networks.
    Krüger J; Opfer R; Gessert N; Ostwaldt AC; Manogaran P; Kitzler HH; Schlaefer A; Schippling S
    Neuroimage Clin; 2020; 28():102445. PubMed ID: 33038667
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extracting Lungs from CT Images via Deep Convolutional Neural Network Based Segmentation and Two-Pass Contour Refinement.
    Liu C; Pang M
    J Digit Imaging; 2020 Dec; 33(6):1465-1478. PubMed ID: 33057882
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Attention-aware 3D U-Net convolutional neural network for knowledge-based planning 3D dose distribution prediction of head-and-neck cancer.
    Osman AFI; Tamam NM
    J Appl Clin Med Phys; 2022 Jul; 23(7):e13630. PubMed ID: 35533234
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of the automatic segmentation of multiple organs at risk in CT images of lung cancer between deep convolutional neural network-based and atlas-based techniques.
    Zhu J; Zhang J; Qiu B; Liu Y; Liu X; Chen L
    Acta Oncol; 2019 Feb; 58(2):257-264. PubMed ID: 30398090
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.