These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
110 related articles for article (PubMed ID: 35574400)
41. Automated left and right ventricular chamber segmentation in cardiac magnetic resonance images using dense fully convolutional neural network. Penso M; Moccia S; Scafuri S; Muscogiuri G; Pontone G; Pepi M; Caiani EG Comput Methods Programs Biomed; 2021 Jun; 204():106059. PubMed ID: 33812305 [TBL] [Abstract][Full Text] [Related]
42. PSA-Net: Deep learning-based physician style-aware segmentation network for postoperative prostate cancer clinical target volumes. Balagopal A; Morgan H; Dohopolski M; Timmerman R; Shan J; Heitjan DF; Liu W; Nguyen D; Hannan R; Garant A; Desai N; Jiang S Artif Intell Med; 2021 Nov; 121():102195. PubMed ID: 34763810 [TBL] [Abstract][Full Text] [Related]
43. Automatic lung nodule detection using a 3D deep convolutional neural network combined with a multi-scale prediction strategy in chest CTs. Gu Y; Lu X; Yang L; Zhang B; Yu D; Zhao Y; Gao L; Wu L; Zhou T Comput Biol Med; 2018 Dec; 103():220-231. PubMed ID: 30390571 [TBL] [Abstract][Full Text] [Related]
44. Abdominal artery segmentation method from CT volumes using fully convolutional neural network. Oda M; Roth HR; Kitasaka T; Misawa K; Fujiwara M; Mori K Int J Comput Assist Radiol Surg; 2019 Dec; 14(12):2069-2081. PubMed ID: 31493112 [TBL] [Abstract][Full Text] [Related]
45. Liver tissue segmentation in multiphase CT scans using cascaded convolutional neural networks. Ouhmich F; Agnus V; Noblet V; Heitz F; Pessaux P Int J Comput Assist Radiol Surg; 2019 Aug; 14(8):1275-1284. PubMed ID: 31041697 [TBL] [Abstract][Full Text] [Related]
46. In-depth learning of automatic segmentation of shoulder joint magnetic resonance images based on convolutional neural networks. Mu X; Cui Y; Bian R; Long L; Zhang D; Wang H; Shen Y; Wu J; Zou G Comput Methods Programs Biomed; 2021 Nov; 211():106325. PubMed ID: 34536635 [TBL] [Abstract][Full Text] [Related]
47. A method of rapid quantification of patient-specific organ doses for CT using deep-learning-based multi-organ segmentation and GPU-accelerated Monte Carlo dose computing. Peng Z; Fang X; Yan P; Shan H; Liu T; Pei X; Wang G; Liu B; Kalra MK; Xu XG Med Phys; 2020 Jun; 47(6):2526-2536. PubMed ID: 32155670 [TBL] [Abstract][Full Text] [Related]
48. Comparison of convolutional neural network training strategies for cone-beam CT image segmentation. Minnema J; Wolff J; Koivisto J; Lucka F; Batenburg KJ; Forouzanfar T; van Eijnatten M Comput Methods Programs Biomed; 2021 Aug; 207():106192. PubMed ID: 34062493 [TBL] [Abstract][Full Text] [Related]
49. AnatomyNet: Deep learning for fast and fully automated whole-volume segmentation of head and neck anatomy. Zhu W; Huang Y; Zeng L; Chen X; Liu Y; Qian Z; Du N; Fan W; Xie X Med Phys; 2019 Feb; 46(2):576-589. PubMed ID: 30480818 [TBL] [Abstract][Full Text] [Related]
50. GC-Net: Global context network for medical image segmentation. Ni J; Wu J; Tong J; Chen Z; Zhao J Comput Methods Programs Biomed; 2020 Jul; 190():105121. PubMed ID: 31623863 [TBL] [Abstract][Full Text] [Related]
51. Segmenting Thoracic Cavities with Neoplastic Lesions: A Head-to-head Benchmark with Fully Convolutional Neural Networks. Li Z; Li R; Kiser KJ; Giancardo L; Zheng WJ ACM BCB; 2021 Aug; 2021():. PubMed ID: 35330920 [TBL] [Abstract][Full Text] [Related]
52. Vessel segmentation from volumetric images: a multi-scale double-pathway network with class-balanced loss at the voxel level. Chen Y; Fan S; Chen Y; Che C; Cao X; He X; Song X; Zhao F Med Phys; 2021 Jul; 48(7):3804-3814. PubMed ID: 33969487 [TBL] [Abstract][Full Text] [Related]
53. Application of Deep Convolution Network to Automated Image Segmentation of Chest CT for Patients With Tumor. Xie H; Zhang JF; Li Q Front Oncol; 2021; 11():719398. PubMed ID: 34660284 [TBL] [Abstract][Full Text] [Related]
54. An iterative multi-path fully convolutional neural network for automatic cardiac segmentation in cine MR images. Ma Z; Wu X; Wang X; Song Q; Yin Y; Cao K; Wang Y; Zhou J Med Phys; 2019 Dec; 46(12):5652-5665. PubMed ID: 31605627 [TBL] [Abstract][Full Text] [Related]
55. A 2D-3D hybrid convolutional neural network for lung lobe auto-segmentation on standard slice thickness computed tomography of patients receiving radiotherapy. Gu H; Gan W; Zhang C; Feng A; Wang H; Huang Y; Chen H; Shao Y; Duan Y; Xu Z Biomed Eng Online; 2021 Sep; 20(1):94. PubMed ID: 34556141 [TBL] [Abstract][Full Text] [Related]
56. Deep learning approaches using 2D and 3D convolutional neural networks for generating male pelvic synthetic computed tomography from magnetic resonance imaging. Fu J; Yang Y; Singhrao K; Ruan D; Chu FI; Low DA; Lewis JH Med Phys; 2019 Sep; 46(9):3788-3798. PubMed ID: 31220353 [TBL] [Abstract][Full Text] [Related]
57. Automated segmentation of the left ventricle from MR cine imaging based on deep learning architecture. Qin W; Wu Y; Li S; Chen Y; Yang Y; Liu X; Zheng H; Liang D; Hu Z Biomed Phys Eng Express; 2020 Feb; 6(2):025009. PubMed ID: 33438635 [TBL] [Abstract][Full Text] [Related]
58. Fusing 2D and 3D convolutional neural networks for the segmentation of aorta and coronary arteries from CT images. Gu L; Cai XC Artif Intell Med; 2021 Nov; 121():102189. PubMed ID: 34763804 [TBL] [Abstract][Full Text] [Related]
59. Evaluation of fully automated myocardial segmentation techniques in native and contrast-enhanced T1-mapping cardiovascular magnetic resonance images using fully convolutional neural networks. Farrag NA; Lochbihler A; White JA; Ukwatta E Med Phys; 2021 Jan; 48(1):215-226. PubMed ID: 33131085 [TBL] [Abstract][Full Text] [Related]
60. Survival outcome prediction in cervical cancer: Cox models vs deep-learning model. Matsuo K; Purushotham S; Jiang B; Mandelbaum RS; Takiuchi T; Liu Y; Roman LD Am J Obstet Gynecol; 2019 Apr; 220(4):381.e1-381.e14. PubMed ID: 30582927 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]