BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 35574487)

  • 1. Pigment Dispersing Factor Is a Circadian Clock Output and Regulates Photoperiodic Response in the Linden Bug,
    Kotwica-Rolinska J; Damulewicz M; Chodakova L; Kristofova L; Dolezel D
    Front Physiol; 2022; 13():884909. PubMed ID: 35574487
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of photoperiod and functional clock on male diapause in cryptochrome and pdf mutants in the linden bug Pyrrhocoris apterus.
    Kaniewska MM; Chvalová D; Dolezel D
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2024 Jul; 210(4):575-584. PubMed ID: 37302092
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Light and Temperature Synchronizes Locomotor Activity in the Linden Bug,
    Kaniewska MM; Vaněčková H; Doležel D; Kotwica-Rolinska J
    Front Physiol; 2020; 11():242. PubMed ID: 32300305
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Involvement of the brain region containing pigment-dispersing factor-immunoreactive neurons in the photoperiodic response of the bean bug, Riptortus pedestris.
    Ikeno T; Numata H; Goto SG; Shiga S
    J Exp Biol; 2014 Feb; 217(Pt 3):453-62. PubMed ID: 24198258
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pigment-dispersing factor is present in circadian clock neurons of pea aphids and may mediate photoperiodic signalling to insulin-producing cells.
    Colizzi FS; Veenstra JA; Rezende GL; Helfrich-Förster C; Martínez-Torres D
    Open Biol; 2023 Jun; 13(6):230090. PubMed ID: 37369351
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Drosophila Receptor Protein Tyrosine Phosphatase LAR Is Required for Development of Circadian Pacemaker Neuron Processes That Support Rhythmic Activity in Constant Darkness But Not during Light/Dark Cycles.
    Agrawal P; Hardin PE
    J Neurosci; 2016 Mar; 36(13):3860-70. PubMed ID: 27030770
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of Olfactory Associative Memory by the Circadian Clock Output Signal Pigment-Dispersing Factor (PDF).
    Flyer-Adams JG; Rivera-Rodriguez EJ; Yu J; Mardovin JD; Reed ML; Griffith LC
    J Neurosci; 2020 Nov; 40(47):9066-9077. PubMed ID: 33106351
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of clock-related proteins and neuropeptides in Drosophila littoralis and their putative role in diapause.
    Manoli G; Zandawala M; Yoshii T; Helfrich-Förster C
    J Comp Neurol; 2023 Oct; 531(15):1525-1549. PubMed ID: 37493077
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolutionary links between circadian clocks and photoperiodic diapause in insects.
    Meuti ME; Denlinger DL
    Integr Comp Biol; 2013 Jul; 53(1):131-43. PubMed ID: 23615363
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photoperiodic plasticity in circadian clock neurons in insects.
    Shiga S
    Front Physiol; 2013; 4():69. PubMed ID: 23986711
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Knockout of cryptochrome 1 disrupts circadian rhythm and photoperiodic diapause induction in the silkworm, Bombyx mori.
    Tobita H; Kiuchi T
    Insect Biochem Mol Biol; 2024 Jul; ():104153. PubMed ID: 38964485
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photoperiodic regulation of diapause in linden bugs: are period and Clock genes involved?
    Syrová Z; Dolezel D; Saumann I; Hodková M
    Cell Mol Life Sci; 2003 Nov; 60(11):2510-5. PubMed ID: 14625693
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Knockouts of positive and negative elements of the circadian clock disrupt photoperiodic diapause induction in the silkworm, Bombyx mori.
    Tobita H; Kiuchi T
    Insect Biochem Mol Biol; 2022 Oct; 149():103842. PubMed ID: 36115518
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pigment-dispersing factor is involved in photoperiodic control of reproduction in the brown-winged green bug, Plautia stali.
    Hasebe M; Kotaki T; Shiga S
    J Insect Physiol; 2022; 137():104359. PubMed ID: 35041845
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Seasonal cues act through the circadian clock and pigment-dispersing factor to control EYES ABSENT and downstream physiological changes.
    Hidalgo S; Anguiano M; Tabuloc CA; Chiu JC
    Curr Biol; 2023 Feb; 33(4):675-687.e5. PubMed ID: 36708710
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photoperiodic and clock regulation of the vitamin A pathway in the brain mediates seasonal responsiveness in the monarch butterfly.
    Iiams SE; Lugena AB; Zhang Y; Hayden AN; Merlin C
    Proc Natl Acad Sci U S A; 2019 Dec; 116(50):25214-25221. PubMed ID: 31767753
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phase coupling of a circadian neuropeptide with rest/activity rhythms detected using a membrane-tethered spider toxin.
    Wu Y; Cao G; Pavlicek B; Luo X; Nitabach MN
    PLoS Biol; 2008 Nov; 6(11):e273. PubMed ID: 18986214
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pigment-dispersing factor and CCHamide1 in the
    Kuwano R; Katsura M; Iwata M; Yokosako T; Yoshii T
    Chronobiol Int; 2023 Mar; 40(3):284-299. PubMed ID: 36786215
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photoperiodic and food signals control expression pattern of the clock gene, period, in the linden bug, Pyrrhocoris apterus.
    Dolezel D; Sauman I; Kost'ál V; Hodkova M
    J Biol Rhythms; 2007 Aug; 22(4):335-42. PubMed ID: 17660450
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antibodies Against the Clock Proteins Period and Cryptochrome Reveal the Neuronal Organization of the Circadian Clock in the Pea Aphid.
    Colizzi FS; Beer K; Cuti P; Deppisch P; Martínez Torres D; Yoshii T; Helfrich-Förster C
    Front Physiol; 2021; 12():705048. PubMed ID: 34366893
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.