BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 35574601)

  • 1. Molecular dynamic assisted investigation on impact of mutations in deazaflavin dependent nitroreductase against pretomanid: a computational study.
    Singh R; Shaheer M; Sobhia ME
    J Biomol Struct Dyn; 2023 Jul; 41(10):4421-4443. PubMed ID: 35574601
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting nitroimidazole antibiotic resistance mutations in Mycobacterium tuberculosis with protein engineering.
    Lee BM; Harold LK; Almeida DV; Afriat-Jurnou L; Aung HL; Forde BM; Hards K; Pidot SJ; Ahmed FH; Mohamed AE; Taylor MC; West NP; Stinear TP; Greening C; Beatson SA; Nuermberger EL; Cook GM; Jackson CJ
    PLoS Pathog; 2020 Feb; 16(2):e1008287. PubMed ID: 32032366
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mutations in
    Rifat D; Li SY; Ioerger T; Shah K; Lanoix JP; Lee J; Bashiri G; Sacchettini J; Nuermberger E
    Antimicrob Agents Chemother; 2020 Dec; 65(1):. PubMed ID: 33077652
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D QSAR, Docking, Molecular Dynamics Simulations and MM-GBSA studies of Extended Side Chain of the Antitubercular Drug (6S) 2-Nitro-6- {[4-(trifluoromethoxy) benzyl] oxy}-6,7-dihydro-5H-imidazo[2,1-b] [1,3] oxazine.
    Chaudhari HK; Pahelkar A
    Infect Disord Drug Targets; 2019; 19(2):145-166. PubMed ID: 30324898
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bactericidal activity of PA-824 against Mycobacterium tuberculosis under anaerobic conditions and computational analysis of its novel analogues against mutant Ddn receptor.
    Somasundaram S; Anand RS; Venkatesan P; Paramasivan CN
    BMC Microbiol; 2013 Oct; 13():218. PubMed ID: 24083570
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Substrate specificity of the deazaflavin-dependent nitroreductase from Mycobacterium tuberculosis responsible for the bioreductive activation of bicyclic nitroimidazoles.
    Gurumurthy M; Mukherjee T; Dowd CS; Singh R; Niyomrattanakit P; Tay JA; Nayyar A; Lee YS; Cherian J; Boshoff HI; Dick T; Barry CE; Manjunatha UH
    FEBS J; 2012 Jan; 279(1):113-25. PubMed ID: 22023140
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mutations in genes for the F420 biosynthetic pathway and a nitroreductase enzyme are the primary resistance determinants in spontaneous in vitro-selected PA-824-resistant mutants of Mycobacterium tuberculosis.
    Haver HL; Chua A; Ghode P; Lakshminarayana SB; Singhal A; Mathema B; Wintjens R; Bifani P
    Antimicrob Agents Chemother; 2015 Sep; 59(9):5316-23. PubMed ID: 26100695
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure of Ddn, the deazaflavin-dependent nitroreductase from Mycobacterium tuberculosis involved in bioreductive activation of PA-824.
    Cellitti SE; Shaffer J; Jones DH; Mukherjee T; Gurumurthy M; Bursulaya B; Boshoff HI; Choi I; Nayyar A; Lee YS; Cherian J; Niyomrattanakit P; Dick T; Manjunatha UH; Barry CE; Spraggon G; Geierstanger BH
    Structure; 2012 Jan; 20(1):101-12. PubMed ID: 22244759
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The
    Mansjö M; Karlsson Lindsjö O; Grönfors Seeth C; Groenheit R; Werngren J
    Antimicrob Agents Chemother; 2022 Dec; 66(12):e0102622. PubMed ID: 36409105
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of in vitro activity of the nitroimidazoles delamanid and pretomanid against multidrug-resistant and extensively drug-resistant tuberculosis.
    Wen S; Jing W; Zhang T; Zong Z; Xue Y; Shang Y; Wang F; Huang H; Chu N; Pang Y
    Eur J Clin Microbiol Infect Dis; 2019 Jul; 38(7):1293-1296. PubMed ID: 30953211
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protonation state of F420H2 in the prodrug-activating deazaflavin dependent nitroreductase (Ddn) from Mycobacterium tuberculosis.
    Mohamed AE; Ahmed FH; Arulmozhiraja S; Lin CY; Taylor MC; Krausz ER; Jackson CJ; Coote ML
    Mol Biosyst; 2016 Apr; 12(4):1110-3. PubMed ID: 26876228
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure-activity relationships of antitubercular nitroimidazoles. 1. Structural features associated with aerobic and anaerobic activities of 4- and 5-nitroimidazoles.
    Kim P; Zhang L; Manjunatha UH; Singh R; Patel S; Jiricek J; Keller TH; Boshoff HI; Barry CE; Dowd CS
    J Med Chem; 2009 Mar; 52(5):1317-28. PubMed ID: 19209889
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanisms of resistance to delamanid, a drug for Mycobacterium tuberculosis.
    Fujiwara M; Kawasaki M; Hariguchi N; Liu Y; Matsumoto M
    Tuberculosis (Edinb); 2018 Jan; 108():186-194. PubMed ID: 29523322
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Systematic review of mutations associated with resistance to the new and repurposed Mycobacterium tuberculosis drugs bedaquiline, clofazimine, linezolid, delamanid and pretomanid.
    Kadura S; King N; Nakhoul M; Zhu H; Theron G; Köser CU; Farhat M
    J Antimicrob Chemother; 2020 Aug; 75(8):2031-2043. PubMed ID: 32361756
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic diversity of candidate loci linked to Mycobacterium tuberculosis resistance to bedaquiline, delamanid and pretomanid.
    Gómez-González PJ; Perdigao J; Gomes P; Puyen ZM; Santos-Lazaro D; Napier G; Hibberd ML; Viveiros M; Portugal I; Campino S; Phelan JE; Clark TG
    Sci Rep; 2021 Sep; 11(1):19431. PubMed ID: 34593898
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High clustering rate and genotypic drug-susceptibility screening for the newly recommended anti-tuberculosis drugs among global extensively drug-resistant
    Trisakul K; Nonghanphithak D; Chaiyachat P; Kaewprasert O; Sakmongkoljit K; Reechaipichitkul W; Chaiprasert A; Blair D; Clark TG; Faksri K
    Emerg Microbes Infect; 2022 Dec; 11(1):1857-1866. PubMed ID: 35792049
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pretomanid resistance: An update on emergence, mechanisms and relevance for clinical practice.
    Nguyen TVA; Nguyen QH; Nguyen TNT; Anthony RM; Vu DH; Alffenaar JC
    Int J Antimicrob Agents; 2023 Oct; 62(4):106953. PubMed ID: 37595848
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spontaneous Mutational Patterns and Novel Mutations for Delamanid Resistance in Mycobacterium tuberculosis.
    Liu Y; Shi J; Li L; Wu T; Chu P; Pang Y; Guo Y; Gao M; Lu J
    Antimicrob Agents Chemother; 2022 Dec; 66(12):e0053122. PubMed ID: 36448833
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design of 2-Nitroimidazooxazine Derivatives as Deazaflavin-Dependent Nitroreductase (Ddn) Activators as Anti-Mycobacterial Agents Based on 3D QSAR, HQSAR, and Docking Study with In Silico Prediction of Activity and Toxicity.
    Gupta N; Vyas VK; Patel BD; Ghate M
    Interdiscip Sci; 2019 Jun; 11(2):191-205. PubMed ID: 28895050
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PA-824 kills nonreplicating Mycobacterium tuberculosis by intracellular NO release.
    Singh R; Manjunatha U; Boshoff HI; Ha YH; Niyomrattanakit P; Ledwidge R; Dowd CS; Lee IY; Kim P; Zhang L; Kang S; Keller TH; Jiricek J; Barry CE
    Science; 2008 Nov; 322(5906):1392-5. PubMed ID: 19039139
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.