These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 35574601)
1. Molecular dynamic assisted investigation on impact of mutations in deazaflavin dependent nitroreductase against pretomanid: a computational study. Singh R; Shaheer M; Sobhia ME J Biomol Struct Dyn; 2023 Jul; 41(10):4421-4443. PubMed ID: 35574601 [TBL] [Abstract][Full Text] [Related]
2. Predicting nitroimidazole antibiotic resistance mutations in Mycobacterium tuberculosis with protein engineering. Lee BM; Harold LK; Almeida DV; Afriat-Jurnou L; Aung HL; Forde BM; Hards K; Pidot SJ; Ahmed FH; Mohamed AE; Taylor MC; West NP; Stinear TP; Greening C; Beatson SA; Nuermberger EL; Cook GM; Jackson CJ PLoS Pathog; 2020 Feb; 16(2):e1008287. PubMed ID: 32032366 [TBL] [Abstract][Full Text] [Related]
3. Mutations in Rifat D; Li SY; Ioerger T; Shah K; Lanoix JP; Lee J; Bashiri G; Sacchettini J; Nuermberger E Antimicrob Agents Chemother; 2020 Dec; 65(1):. PubMed ID: 33077652 [TBL] [Abstract][Full Text] [Related]
4. 3D QSAR, Docking, Molecular Dynamics Simulations and MM-GBSA studies of Extended Side Chain of the Antitubercular Drug (6S) 2-Nitro-6- {[4-(trifluoromethoxy) benzyl] oxy}-6,7-dihydro-5H-imidazo[2,1-b] [1,3] oxazine. Chaudhari HK; Pahelkar A Infect Disord Drug Targets; 2019; 19(2):145-166. PubMed ID: 30324898 [TBL] [Abstract][Full Text] [Related]
5. Bactericidal activity of PA-824 against Mycobacterium tuberculosis under anaerobic conditions and computational analysis of its novel analogues against mutant Ddn receptor. Somasundaram S; Anand RS; Venkatesan P; Paramasivan CN BMC Microbiol; 2013 Oct; 13():218. PubMed ID: 24083570 [TBL] [Abstract][Full Text] [Related]
6. Substrate specificity of the deazaflavin-dependent nitroreductase from Mycobacterium tuberculosis responsible for the bioreductive activation of bicyclic nitroimidazoles. Gurumurthy M; Mukherjee T; Dowd CS; Singh R; Niyomrattanakit P; Tay JA; Nayyar A; Lee YS; Cherian J; Boshoff HI; Dick T; Barry CE; Manjunatha UH FEBS J; 2012 Jan; 279(1):113-25. PubMed ID: 22023140 [TBL] [Abstract][Full Text] [Related]
7. Mutations in genes for the F420 biosynthetic pathway and a nitroreductase enzyme are the primary resistance determinants in spontaneous in vitro-selected PA-824-resistant mutants of Mycobacterium tuberculosis. Haver HL; Chua A; Ghode P; Lakshminarayana SB; Singhal A; Mathema B; Wintjens R; Bifani P Antimicrob Agents Chemother; 2015 Sep; 59(9):5316-23. PubMed ID: 26100695 [TBL] [Abstract][Full Text] [Related]
8. Structure of Ddn, the deazaflavin-dependent nitroreductase from Mycobacterium tuberculosis involved in bioreductive activation of PA-824. Cellitti SE; Shaffer J; Jones DH; Mukherjee T; Gurumurthy M; Bursulaya B; Boshoff HI; Choi I; Nayyar A; Lee YS; Cherian J; Niyomrattanakit P; Dick T; Manjunatha UH; Barry CE; Spraggon G; Geierstanger BH Structure; 2012 Jan; 20(1):101-12. PubMed ID: 22244759 [TBL] [Abstract][Full Text] [Related]
10. Comparison of in vitro activity of the nitroimidazoles delamanid and pretomanid against multidrug-resistant and extensively drug-resistant tuberculosis. Wen S; Jing W; Zhang T; Zong Z; Xue Y; Shang Y; Wang F; Huang H; Chu N; Pang Y Eur J Clin Microbiol Infect Dis; 2019 Jul; 38(7):1293-1296. PubMed ID: 30953211 [TBL] [Abstract][Full Text] [Related]
11. Protonation state of F420H2 in the prodrug-activating deazaflavin dependent nitroreductase (Ddn) from Mycobacterium tuberculosis. Mohamed AE; Ahmed FH; Arulmozhiraja S; Lin CY; Taylor MC; Krausz ER; Jackson CJ; Coote ML Mol Biosyst; 2016 Apr; 12(4):1110-3. PubMed ID: 26876228 [TBL] [Abstract][Full Text] [Related]
12. Structure-activity relationships of antitubercular nitroimidazoles. 1. Structural features associated with aerobic and anaerobic activities of 4- and 5-nitroimidazoles. Kim P; Zhang L; Manjunatha UH; Singh R; Patel S; Jiricek J; Keller TH; Boshoff HI; Barry CE; Dowd CS J Med Chem; 2009 Mar; 52(5):1317-28. PubMed ID: 19209889 [TBL] [Abstract][Full Text] [Related]
13. Mechanisms of resistance to delamanid, a drug for Mycobacterium tuberculosis. Fujiwara M; Kawasaki M; Hariguchi N; Liu Y; Matsumoto M Tuberculosis (Edinb); 2018 Jan; 108():186-194. PubMed ID: 29523322 [TBL] [Abstract][Full Text] [Related]
14. Systematic review of mutations associated with resistance to the new and repurposed Mycobacterium tuberculosis drugs bedaquiline, clofazimine, linezolid, delamanid and pretomanid. Kadura S; King N; Nakhoul M; Zhu H; Theron G; Köser CU; Farhat M J Antimicrob Chemother; 2020 Aug; 75(8):2031-2043. PubMed ID: 32361756 [TBL] [Abstract][Full Text] [Related]
15. Genetic diversity of candidate loci linked to Mycobacterium tuberculosis resistance to bedaquiline, delamanid and pretomanid. Gómez-González PJ; Perdigao J; Gomes P; Puyen ZM; Santos-Lazaro D; Napier G; Hibberd ML; Viveiros M; Portugal I; Campino S; Phelan JE; Clark TG Sci Rep; 2021 Sep; 11(1):19431. PubMed ID: 34593898 [TBL] [Abstract][Full Text] [Related]
16. High clustering rate and genotypic drug-susceptibility screening for the newly recommended anti-tuberculosis drugs among global extensively drug-resistant Trisakul K; Nonghanphithak D; Chaiyachat P; Kaewprasert O; Sakmongkoljit K; Reechaipichitkul W; Chaiprasert A; Blair D; Clark TG; Faksri K Emerg Microbes Infect; 2022 Dec; 11(1):1857-1866. PubMed ID: 35792049 [TBL] [Abstract][Full Text] [Related]
17. Pretomanid resistance: An update on emergence, mechanisms and relevance for clinical practice. Nguyen TVA; Nguyen QH; Nguyen TNT; Anthony RM; Vu DH; Alffenaar JC Int J Antimicrob Agents; 2023 Oct; 62(4):106953. PubMed ID: 37595848 [TBL] [Abstract][Full Text] [Related]
18. Spontaneous Mutational Patterns and Novel Mutations for Delamanid Resistance in Mycobacterium tuberculosis. Liu Y; Shi J; Li L; Wu T; Chu P; Pang Y; Guo Y; Gao M; Lu J Antimicrob Agents Chemother; 2022 Dec; 66(12):e0053122. PubMed ID: 36448833 [TBL] [Abstract][Full Text] [Related]
19. Design of 2-Nitroimidazooxazine Derivatives as Deazaflavin-Dependent Nitroreductase (Ddn) Activators as Anti-Mycobacterial Agents Based on 3D QSAR, HQSAR, and Docking Study with In Silico Prediction of Activity and Toxicity. Gupta N; Vyas VK; Patel BD; Ghate M Interdiscip Sci; 2019 Jun; 11(2):191-205. PubMed ID: 28895050 [TBL] [Abstract][Full Text] [Related]
20. DprE1 and Ddn as promising therapeutic targets in the development of novel anti-tuberculosis nitroaromatic drugs. Paoli-Lombardo R; Primas N; Vanelle P Eur J Med Chem; 2024 Aug; 274():116559. PubMed ID: 38850856 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]