BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 35574660)

  • 1. SVA Retrotransposons and a Low Copy Repeat in Humans and Great Apes: A Mobile Connection.
    Damert A
    Mol Biol Evol; 2022 May; 39(5):. PubMed ID: 35574660
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An evolutionary driver of interspersed segmental duplications in primates.
    Cantsilieris S; Sunkin SM; Johnson ME; Anaclerio F; Huddleston J; Baker C; Dougherty ML; Underwood JG; Sulovari A; Hsieh P; Mao Y; Catacchio CR; Malig M; Welch AE; Sorensen M; Munson KM; Jiang W; Girirajan S; Ventura M; Lamb BT; Conlon RA; Eichler EE
    Genome Biol; 2020 Aug; 21(1):202. PubMed ID: 32778141
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lineage specific evolution of the VNTR composite retrotransposon central domain and its role in retrotransposition of gibbon LAVA elements.
    Lupan I; Bulzu P; Popescu O; Damert A
    BMC Genomics; 2015 May; 16(1):389. PubMed ID: 25981446
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recurrent duplication-driven transposition of DNA during hominoid evolution.
    Johnson ME; ; Cheng Z; Morrison VA; Scherer S; Ventura M; Gibbs RA; Green ED; Eichler EE
    Proc Natl Acad Sci U S A; 2006 Nov; 103(47):17626-31. PubMed ID: 17101969
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phylogenomic analysis reveals splicing as a mechanism of parallel evolution of non-canonical SVAs in hominine primates.
    Damert A
    Mob DNA; 2018; 9():30. PubMed ID: 30237828
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Role of SINE-VNTR-Alu (SVA) Retrotransposons in Shaping the Human Genome.
    Gianfrancesco O; Geary B; Savage AL; Billingsley KJ; Bubb VJ; Quinn JP
    Int J Mol Sci; 2019 Nov; 20(23):. PubMed ID: 31783611
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Emergence of primate genes by retrotransposon-mediated sequence transduction.
    Xing J; Wang H; Belancio VP; Cordaux R; Deininger PL; Batzer MA
    Proc Natl Acad Sci U S A; 2006 Nov; 103(47):17608-13. PubMed ID: 17101974
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The evolution of human segmental duplications and the core duplicon hypothesis.
    Marques-Bonet T; Eichler EE
    Cold Spring Harb Symp Quant Biol; 2009; 74():355-62. PubMed ID: 19717539
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Divergent origins and concerted expansion of two segmental duplications on chromosome 16.
    Eichler EE; Johnson ME; Alkan C; Tuzun E; Sahinalp C; Misceo D; Archidiacono N; Rocchi M
    J Hered; 2001; 92(6):462-8. PubMed ID: 11948212
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel composite retrotransposon derived from or generated independently of the SVA (SINE/VNTR/Alu) transposon has undergone proliferation in gibbon genomes.
    Hara T; Hirai Y; Baicharoen S; Hayakawa T; Hirai H; Koga A
    Genes Genet Syst; 2012; 87(3):181-90. PubMed ID: 22976393
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SVA elements: a hominid-specific retroposon family.
    Wang H; Xing J; Grover D; Hedges DJ; Han K; Walker JA; Batzer MA
    J Mol Biol; 2005 Dec; 354(4):994-1007. PubMed ID: 16288912
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SVA retrotransposon insertion-associated deletion represents a novel mutational mechanism underlying large genomic copy number changes with non-recurrent breakpoints.
    Vogt J; Bengesser K; Claes KB; Wimmer K; Mautner VF; van Minkelen R; Legius E; Brems H; Upadhyaya M; Högel J; Lazaro C; Rosenbaum T; Bammert S; Messiaen L; Cooper DN; Kehrer-Sawatzki H
    Genome Biol; 2014 Jun; 15(6):R80. PubMed ID: 24958239
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An evolutionary arms race between KRAB zinc-finger genes ZNF91/93 and SVA/L1 retrotransposons.
    Jacobs FM; Greenberg D; Nguyen N; Haeussler M; Ewing AD; Katzman S; Paten B; Salama SR; Haussler D
    Nature; 2014 Dec; 516(7530):242-5. PubMed ID: 25274305
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel framework for the identification and analysis of duplicons between human and chimpanzee.
    Chuang TJ; Wu SZ; Huang YT
    Biomed Res Int; 2013; 2013():264532. PubMed ID: 23984331
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hominoid composite non-LTR retrotransposons-variety, assembly, evolution, and structural determinants of mobilization.
    Ianc B; Ochis C; Persch R; Popescu O; Damert A
    Mol Biol Evol; 2014 Nov; 31(11):2847-64. PubMed ID: 25216663
    [TBL] [Abstract][Full Text] [Related]  

  • 16. LINE-1 ORF1p does not determine substrate preference for human/orangutan SVA and gibbon LAVA.
    Damert A
    Mob DNA; 2020; 11():27. PubMed ID: 32676128
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Retrotransposable elements and human disease.
    Callinan PA; Batzer MA
    Genome Dyn; 2006; 1():104-115. PubMed ID: 18724056
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A non-human primate BAC resource to study interchromosomal segmental duplications.
    Kirsch S; Hodler C; Schempp W
    Cytogenet Genome Res; 2009; 125(4):253-9. PubMed ID: 19864887
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolutionary analysis of the highly dynamic CHEK2 duplicon in anthropoids.
    Münch C; Kirsch S; Fernandes AM; Schempp W
    BMC Evol Biol; 2008 Oct; 8():269. PubMed ID: 18831734
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrating networks and comparative genomics reveals retroelement proliferation dynamics in hominid genomes.
    Levy O; Knisbacher BA; Levanon EY; Havlin S
    Sci Adv; 2017 Oct; 3(10):e1701256. PubMed ID: 29043294
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.