These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 35574688)

  • 41. SARS-CoV-2 and the Nucleus.
    Chen M; Ma Y; Chang W
    Int J Biol Sci; 2022; 18(12):4731-4743. PubMed ID: 35874947
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A snapshot of protein trafficking in SARS-CoV-2 infection.
    Prasad V; Bartenschlager R
    Biol Cell; 2023 Feb; 115(2):e2200073. PubMed ID: 36314261
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Autophagy in severe acute respiratory syndrome coronavirus 2 infection.
    Chen D; Zhang H
    Curr Opin Physiol; 2022 Oct; 29():100596. PubMed ID: 36187896
    [TBL] [Abstract][Full Text] [Related]  

  • 44. SARS-CoV-2 and the host-immune response.
    Maison DP; Deng Y; Gerschenson M
    Front Immunol; 2023; 14():1195871. PubMed ID: 37404823
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Endomembrane remodeling in SARS-CoV-2 infection.
    Chen D; Zhao YG; Zhang H
    Cell Insight; 2022 Jun; 1(3):100031. PubMed ID: 37193051
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Mitochondria Targeted Viral Replication and Survival Strategies-Prospective on SARS-CoV-2.
    Gatti P; Ilamathi HS; Todkar K; Germain M
    Front Pharmacol; 2020; 11():578599. PubMed ID: 32982760
    [TBL] [Abstract][Full Text] [Related]  

  • 47. SARS-CoV-2 accessory protein 7b forms homotetramers in detergent.
    Surya W; Queralt-Martin M; Mu Y; Aguilella VM; Torres J
    Virol J; 2022 Nov; 19(1):193. PubMed ID: 36414943
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Prediction of SARS-CoV-2 Infection Phosphorylation Sites and Associations of these Modifications with Lung Cancer Development.
    Li W; Li G; Sun Y; Zhang L; Cui X; Jia Y; Zhao T
    Curr Gene Ther; 2024; 24(3):239-248. PubMed ID: 37957848
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The role of death domain proteins in host response upon SARS-CoV-2 infection: modulation of programmed cell death and translational applications.
    Ivanisenko NV; Seyrek K; Kolchanov NA; Ivanisenko VA; Lavrik IN
    Cell Death Discov; 2020; 6(1):101. PubMed ID: 33072409
    [TBL] [Abstract][Full Text] [Related]  

  • 50. COVID-19 relapse associated with SARS-CoV-2 evasion from CD4
    Morita R; Kubota-Koketsu R; Lu X; Sasaki T; Nakayama EE; Liu YC; Okuzaki D; Motooka D; Wing JB; Fujikawa Y; Ichida Y; Amo K; Goto T; Hara J; Shirano M; Yamasaki S; Shioda T
    iScience; 2023 May; 26(5):106685. PubMed ID: 37124420
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Viral strategies for circumventing p53: the case of severe acute respiratory syndrome coronavirus.
    Cardozo CM; Hainaut P
    Curr Opin Oncol; 2021 Mar; 33(2):149-158. PubMed ID: 33405482
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Mechanism involved in the pathogenesis and immune response against SARS-CoV-2 infection.
    Sahu U; Biswas D; Singh AK; Khare P
    Virusdisease; 2021 Jun; 32(2):211-219. PubMed ID: 33969150
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Advancing therapies for viral infections using mechanistic computational models of the dynamic interplay between the virus and host immune response.
    Zarnitsyna VI; Gianlupi JF; Hagar A; Sego TJ; Glazier JA
    Curr Opin Virol; 2021 Oct; 50():103-109. PubMed ID: 34450519
    [TBL] [Abstract][Full Text] [Related]  

  • 54. SARS-CoV-2 ORF3c impairs mitochondrial respiratory metabolism, oxidative stress, and autophagic flux.
    Mozzi A; Oldani M; Forcella ME; Vantaggiato C; Cappelletti G; Pontremoli C; Valenti F; Forni D; Saresella M; Biasin M; Sironi M; Fusi P; Cagliani R
    iScience; 2023 Jul; 26(7):107118. PubMed ID: 37361873
    [TBL] [Abstract][Full Text] [Related]  

  • 55. How much (evil) intelligence can be encoded by 30 kb?
    Duda E
    Biol Futur; 2023 Jun; 74(1-2):61-67. PubMed ID: 36752964
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Possibilities for the Entrance of SARS-Cov-2 as an Archaeal Virus into the Ecosystem.
    Mirshafiey A; Aslani M; Mortazavi-Jahromi SS
    Iran J Public Health; 2021 Dec; 50(12):2608-2609. PubMed ID: 36317035
    [No Abstract]   [Full Text] [Related]  

  • 57. SARS-COV-2 virus triggers immune antitumor response in a lymphoma patient.
    Rudolphi-Solero T; Rashki M; Fernández-Fernández J; Rivas-Navas D; Ramos-Font C; Rodríguez-Fernández A
    Rev Esp Med Nucl Imagen Mol (Engl Ed); 2021 May; 42(1):59-60. PubMed ID: 34074622
    [No Abstract]   [Full Text] [Related]  

  • 58. Daily briefing: Can we become immune to SARS-CoV-2?
    Graham F
    Nature; 2020 Sep; ():. PubMed ID: 34475544
    [No Abstract]   [Full Text] [Related]  

  • 59. How SARS-CoV-2 dodges immune surveillance and facilitates infection: an analytical review.
    Wang Q; Wu X; Mao Q; Gao F; Liu M; Song Z; Bian L; Liang Z
    Expert Rev Anti Infect Ther; 2022 Aug; 20(8):1119-1127. PubMed ID: 35574688
    [TBL] [Abstract][Full Text] [Related]  

  • 60. SARS-CoV-2 Non-Structural Proteins and Their Roles in Host Immune Evasion.
    Low ZY; Zabidi NZ; Yip AJW; Puniyamurti A; Chow VTK; Lal SK
    Viruses; 2022 Sep; 14(9):. PubMed ID: 36146796
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.