These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
106 related articles for article (PubMed ID: 35574725)
1. Dynamic prediction with time-dependent marker in survival analysis using supervised functional principal component analysis. Shi H; Jiang S; Cao J Stat Med; 2022 Aug; 41(18):3547-3560. PubMed ID: 35574725 [TBL] [Abstract][Full Text] [Related]
2. Partial least squares for functional joint models with applications to the Alzheimer's disease neuroimaging initiative study. Wang Y; Ibrahim JG; Zhu H Biometrics; 2020 Dec; 76(4):1109-1119. PubMed ID: 32010968 [TBL] [Abstract][Full Text] [Related]
3. Mean residual life regression with functional principal component analysis on longitudinal data for dynamic prediction. Lin X; Lu T; Yan F; Li R; Huang X Biometrics; 2018 Dec; 74(4):1482-1491. PubMed ID: 29601636 [TBL] [Abstract][Full Text] [Related]
4. Dynamic prediction of Alzheimer's disease progression using features of multiple longitudinal outcomes and time-to-event data. Li K; Luo S Stat Med; 2019 Oct; 38(24):4804-4818. PubMed ID: 31386218 [TBL] [Abstract][Full Text] [Related]
5. Dynamic prediction of time to a clinical event with sparse and irregularly measured longitudinal biomarkers. Zhu Y; Huang X; Li L Biom J; 2020 Oct; 62(6):1371-1393. PubMed ID: 32196728 [TBL] [Abstract][Full Text] [Related]
6. Quantile residual lifetime regression with functional principal component analysis of longitudinal data for dynamic prediction. Lin X; Li R; Yan F; Lu T; Huang X Stat Methods Med Res; 2019 Apr; 28(4):1216-1229. PubMed ID: 29402190 [TBL] [Abstract][Full Text] [Related]
7. Predicting the onset of breast cancer using mammogram imaging data with irregular boundary. Jiang S; Cao J; Colditz GA; Rosner B Biostatistics; 2023 Apr; 24(2):358-371. PubMed ID: 34435196 [TBL] [Abstract][Full Text] [Related]
8. Functional principal component models for sparse and irregularly spaced data by Bayesian inference. Ye J J Appl Stat; 2024; 51(7):1287-1317. PubMed ID: 38835826 [TBL] [Abstract][Full Text] [Related]
9. Dynamic predictions in Bayesian functional joint models for longitudinal and time-to-event data: An application to Alzheimer's disease. Li K; Luo S Stat Methods Med Res; 2019 Feb; 28(2):327-342. PubMed ID: 28750578 [TBL] [Abstract][Full Text] [Related]
10. Functional survival forests for multivariate longitudinal outcomes: Dynamic prediction of Alzheimer's disease progression. Lin J; Li K; Luo S Stat Methods Med Res; 2021 Jan; 30(1):99-111. PubMed ID: 32726189 [TBL] [Abstract][Full Text] [Related]
11. Exploring functional data analysis and wavelet principal component analysis on ecstasy (MDMA) wastewater data. Salvatore S; Bramness JG; Røislien J BMC Med Res Methodol; 2016 Jul; 16():81. PubMed ID: 27406032 [TBL] [Abstract][Full Text] [Related]
12. Supervised two-dimensional functional principal component analysis with time-to-event outcomes and mammogram imaging data. Jiang S; Cao J; Rosner B; Colditz GA Biometrics; 2023 Jun; 79(2):1359-1369. PubMed ID: 34854477 [TBL] [Abstract][Full Text] [Related]
13. Jointly modelling multiple transplant outcomes by a competing risk model via functional principal component analysis. Dong JJ; Shi H; Wang L; Zhang Y; Cao J J Appl Stat; 2023; 50(1):43-59. PubMed ID: 36530777 [TBL] [Abstract][Full Text] [Related]
14. STGP: Spatio-temporal Gaussian process models for longitudinal neuroimaging data. Hyun JW; Li Y; Huang C; Styner M; Lin W; Zhu H; Neuroimage; 2016 Jul; 134():550-562. PubMed ID: 27103140 [TBL] [Abstract][Full Text] [Related]
15. Longitudinal Exposure-Response Modeling of Multiple Indicators of Alzheimer's Disease Progression. Polhamus DG; Dolton MJ; Rogers JA; Honigberg L; Jin JY; Quartino A J Prev Alzheimers Dis; 2023; 10(2):212-222. PubMed ID: 36946448 [TBL] [Abstract][Full Text] [Related]
16. Functional joint model for longitudinal and time-to-event data: an application to Alzheimer's disease. Li K; Luo S Stat Med; 2017 Sep; 36(22):3560-3572. PubMed ID: 28664662 [TBL] [Abstract][Full Text] [Related]
17. Modeling sparse longitudinal data on Riemannian manifolds. Dai X; Lin Z; Müller HG Biometrics; 2021 Dec; 77(4):1328-1341. PubMed ID: 33034049 [TBL] [Abstract][Full Text] [Related]
18. Early diagnosis of Alzheimer's disease on ADNI data using novel longitudinal score based on functional principal component analysis. Shi H; Ma D; Nie Y; Faisal Beg M; Pei J; Cao J; Neuroimaging Initiative TAD J Med Imaging (Bellingham); 2021 Mar; 8(2):024502. PubMed ID: 33898638 [No Abstract] [Full Text] [Related]
19. A Methodology for Global Sensitivity Analysis of Activated Sludge Models: Case Study with Activated Sludge Model No. 3 (ASM3). Fortela DLB; Farmer K; Zappi A; Sharp WW; Revellame E; Gang D; Zappi M Water Environ Res; 2019 Sep; 91(9):865-876. PubMed ID: 31004529 [TBL] [Abstract][Full Text] [Related]
20. Region-of-Interest based sparse feature learning method for Alzheimer's disease identification. Wang L; Liu Y; Zeng X; Cheng H; Wang Z; Wang Q Comput Methods Programs Biomed; 2020 Apr; 187():105290. PubMed ID: 31927305 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]