These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 35574901)
1. Low-intensity pulsed ultrasound promotes cell viability and inhibits apoptosis of H9C2 cardiomyocytes in 3D bioprinting scaffolds via PI3K-Akt and ERK1/2 pathways. Hu Y; Jia Y; Wang H; Cao Q; Yang Y; Zhou Y; Tan T; Huang X; Zhou Q J Biomater Appl; 2022 Sep; 37(3):402-414. PubMed ID: 35574901 [TBL] [Abstract][Full Text] [Related]
2. Low-intensity pulsed ultrasound promotes the proliferation of human bone mesenchymal stem cells by activating PI3K/AKt signaling pathways. Xie S; Jiang X; Wang R; Xie S; Hua Y; Zhou S; Yang Y; Zhang J J Cell Biochem; 2019 Sep; 120(9):15823-15833. PubMed ID: 31090943 [TBL] [Abstract][Full Text] [Related]
3. Low-intensity pulsed ultrasound activates ERK1/2 and PI3K-Akt signalling pathways and promotes the proliferation of human amnion-derived mesenchymal stem cells. Ling L; Wei T; He L; Wang Y; Wang Y; Feng X; Zhang W; Xiong Z Cell Prolif; 2017 Dec; 50(6):. PubMed ID: 28940899 [TBL] [Abstract][Full Text] [Related]
4. 3D Bioprinting of Low-Concentration Cell-Laden Gelatin Methacrylate (GelMA) Bioinks with a Two-Step Cross-linking Strategy. Yin J; Yan M; Wang Y; Fu J; Suo H ACS Appl Mater Interfaces; 2018 Feb; 10(8):6849-6857. PubMed ID: 29405059 [TBL] [Abstract][Full Text] [Related]
5. Low-intensity pulsed ultrasound promotes proliferation and migration of HaCaT keratinocytes through the PI3K/AKT and JNK pathways. Leng X; Shang J; Gao D; Wu J Braz J Med Biol Res; 2018 Oct; 51(12):e7862. PubMed ID: 30365726 [TBL] [Abstract][Full Text] [Related]
6. Ultrasound-controlled nano oxygen carriers enhancing cell viability in 3D GelMA hydrogel for the treatment of myocardial infarction. Wang H; Guo Y; Hu Y; Zhou Y; Chen Y; Huang X; Chen J; Deng Q; Cao S; Hu B; Jiang R; Pan J; Tan T; Wang Y; Chen Y; Dong Q; Chen P; Zhou Q Int J Biol Macromol; 2023 Jul; 244():125139. PubMed ID: 37268076 [TBL] [Abstract][Full Text] [Related]
7. 3D bioprinting of fish skin-based gelatin methacryloyl (GelMA) bio-ink for use as a potential skin substitute. Tanadchangsaeng N; Pasanaphong K; Tawonsawatruk T; Rattanapinyopituk K; Tangketsarawan B; Rawiwet V; Kongchanagul A; Srikaew N; Yoyruerop T; Panupinthu N; Sangpayap R; Panaksri A; Boonyagul S; Hemstapat R Sci Rep; 2024 Oct; 14(1):23240. PubMed ID: 39369014 [TBL] [Abstract][Full Text] [Related]
8. Bisulfite-initiated crosslinking of gelatin methacryloyl hydrogels for embedded 3D bioprinting. Bilici Ç; Tatar AG; Şentürk E; Dikyol C; Koç B Biofabrication; 2022 Feb; 14(2):. PubMed ID: 35062010 [TBL] [Abstract][Full Text] [Related]
9. 3D-bioprinting of aortic valve interstitial cells: impact of hydrogel and printing parameters on cell viability. Immohr MB; Dos Santos Adrego F; Teichert HL; Schmidt V; Sugimura Y; Bauer S; Barth M; Lichtenberg A; Akhyari P Biomed Mater; 2022 Nov; 18(1):. PubMed ID: 36322974 [TBL] [Abstract][Full Text] [Related]
10. A skeleton muscle model using GelMA-based cell-aligned bioink processed with an electric-field assisted 3D/4D bioprinting. Yang GH; Kim W; Kim J; Kim G Theranostics; 2021; 11(1):48-63. PubMed ID: 33391460 [TBL] [Abstract][Full Text] [Related]
11. Low Intensity Pulsed Ultrasound Promotes the Extracellular Matrix Synthesis of Degenerative Human Nucleus Pulposus Cells Through FAK/PI3K/Akt Pathway. Zhang X; Hu Z; Hao J; Shen J Spine (Phila Pa 1976); 2016 Mar; 41(5):E248-54. PubMed ID: 26571160 [TBL] [Abstract][Full Text] [Related]
12. Low-intensity Pulsed Ultrasound regulates alveolar bone homeostasis in experimental Periodontitis by diminishing Oxidative Stress. Ying S; Tan M; Feng G; Kuang Y; Chen D; Li J; Song J Theranostics; 2020; 10(21):9789-9807. PubMed ID: 32863960 [TBL] [Abstract][Full Text] [Related]
13. Three-dimensional bioprinting of artificial ovaries by an extrusion-based method using gelatin-methacryloyl bioink. Wu T; Gao YY; Su J; Tang XN; Chen Q; Ma LW; Zhang JJ; Wu JM; Wang SX Climacteric; 2022 Apr; 25(2):170-178. PubMed ID: 33993814 [TBL] [Abstract][Full Text] [Related]
14. Reversible physical crosslinking strategy with optimal temperature for 3D bioprinting of human chondrocyte-laden gelatin methacryloyl bioink. Gu Y; Zhang L; Du X; Fan Z; Wang L; Sun W; Cheng Y; Zhu Y; Chen C J Biomater Appl; 2018 Nov; 33(5):609-618. PubMed ID: 30360677 [TBL] [Abstract][Full Text] [Related]
15. Printability and bio-functionality of a shear thinning methacrylated xanthan-gelatin composite bioink. Garcia-Cruz MR; Postma A; Frith JE; Meagher L Biofabrication; 2021 Apr; 13(3):. PubMed ID: 33662950 [TBL] [Abstract][Full Text] [Related]
16. Infiltration from Suspension Systems Enables Effective Modulation of 3D Scaffold Properties in Suspension Bioprinting. Wang C; Honiball JR; Lin J; Xia X; Lau DSA; Chen B; Deng L; Lu WW ACS Appl Mater Interfaces; 2022 Jun; 14(24):27575-27588. PubMed ID: 35674114 [TBL] [Abstract][Full Text] [Related]
17. Improving printability of hydrogel-based bio-inks for thermal inkjet bioprinting applications Suntornnond R; Ng WL; Huang X; Yeow CHE; Yeong WY J Mater Chem B; 2022 Aug; 10(31):5989-6000. PubMed ID: 35876487 [TBL] [Abstract][Full Text] [Related]