These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 35575032)

  • 1. Correlated quantum treatment of the photodissociation dynamics of formaldehyde oxide CH
    Nikoobakht B; Köppel H
    Phys Chem Chem Phys; 2022 May; 24(20):12433-12441. PubMed ID: 35575032
    [TBL] [Abstract][Full Text] [Related]  

  • 2. UV Absorption Spectroscopy of the Conformer-Dependent Reactivity of the Four Carbon Criegee Intermediate of Methyl Vinyl Ketone Oxide: An Ab initio Quantum Dynamics Study.
    Nikoobakht B
    J Phys Chem A; 2023 Dec; 127(48):10091-10103. PubMed ID: 38012831
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fully quantal description of combined internal conversion and intersystem crossing processes in the smallest Criegee intermediate CH
    Nikoobakht B; Köppel H
    Phys Chem Chem Phys; 2024 Sep; 26(37):24591-24606. PubMed ID: 39269221
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photodissociation dynamics and UV absorption spectrum of acetone oxide (CH
    Nikoobakht B; Köppel H
    Phys Chem Chem Phys; 2023 Jul; 25(29):19470-19480. PubMed ID: 37439493
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Velocity map imaging of O-atom products from UV photodissociation of the CH2OO Criegee intermediate.
    Li H; Fang Y; Beames JM; Lester MI
    J Chem Phys; 2015 Jun; 142(21):214312. PubMed ID: 26049501
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An ab initio quantum dynamics simulation of UV absorption spectrum of methyl vinyl ketone oxide.
    Nikoobakht B
    J Chem Phys; 2022 Jul; 157(1):014101. PubMed ID: 35803820
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantum dynamical investigation of the simplest Criegee intermediate CH2OO and its O-O photodissociation channels.
    Samanta K; Beames JM; Lester MI; Subotnik JE
    J Chem Phys; 2014 Oct; 141(13):134303. PubMed ID: 25296802
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Absolute Ultraviolet Absorption Spectrum of a Criegee Intermediate CH2OO.
    Sheps L
    J Phys Chem Lett; 2013 Dec; 4(24):4201-5. PubMed ID: 26296165
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prompt release of O
    Vansco MF; Li H; Lester MI
    J Chem Phys; 2017 Jul; 147(1):013907. PubMed ID: 28688384
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Semiclassical Dynamics on Machine-Learned Coupled Multireference Potential Energy Surfaces: Application to the Photodissociation of the Simplest Criegee Intermediate.
    Sit MK; Das S; Samanta K
    J Phys Chem A; 2023 Mar; 127(10):2376-2387. PubMed ID: 36856588
    [TBL] [Abstract][Full Text] [Related]  

  • 11. UV absorption spectrum and photodissociation channels of the simplest Criegee intermediate (CH2OO).
    Dawes R; Jiang B; Guo H
    J Am Chem Soc; 2015 Jan; 137(1):50-3. PubMed ID: 25470300
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Communication: Ultraviolet photodissociation dynamics of the simplest Criegee intermediate CH2OO.
    Lehman JH; Li H; Beames JM; Lester MI
    J Chem Phys; 2013 Oct; 139(14):141103. PubMed ID: 24116596
    [TBL] [Abstract][Full Text] [Related]  

  • 13. UV Photodissociation Dynamics of the CH3CHOO Criegee Intermediate: Action Spectroscopy and Velocity Map Imaging of O-Atom Products.
    Li H; Fang Y; Kidwell NM; Beames JM; Lester MI
    J Phys Chem A; 2015 Jul; 119(30):8328-37. PubMed ID: 26192017
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New accurate diabatic potential energy surfaces for the two lowest
    Chen J; Zhang H; Zhou L; Hu X; Xie D
    Phys Chem Chem Phys; 2023 Oct; 25(38):26032-26042. PubMed ID: 37750311
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Substituent effects on the spectroscopic properties of Criegee intermediates.
    Trabelsi T; Kumar M; Francisco JS
    J Chem Phys; 2017 Oct; 147(16):164303. PubMed ID: 29096470
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Born-Oppenheimer and Renner-Teller Quantum Dynamics of CH(X(2)Π) + D((2)S) Reactions on Three CHD Potential Surfaces.
    Gamallo P; Akpinar S; Defazio P; Petrongolo C
    J Phys Chem A; 2015 Nov; 119(46):11254-64. PubMed ID: 26522748
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantum chemical interpretation of ultrafast luminescence decay and intersystem crossings in rhenium(I) carbonyl bipyridine complexes.
    Gourlaouen C; Eng J; Otsuka M; Gindensperger E; Daniel C
    J Chem Theory Comput; 2015 Jan; 11(1):99-110. PubMed ID: 26574208
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photodissociation Dynamics of CH
    Esposito VJ; Liu T; Wang G; Caracciolo A; Vansco MF; Marchetti B; Karsili TNV; Lester MI
    J Phys Chem A; 2021 Aug; 125(30):6571-6579. PubMed ID: 34314179
    [TBL] [Abstract][Full Text] [Related]  

  • 19. State-to-state vacuum ultraviolet photodissociation study of CO2 on the formation of state-correlated CO(X(1)Σ(+); v) with O((1)D) and O((1)S) photoproducts at 11.95-12.22 eV.
    Lu Z; Chang YC; Benitez Y; Luo Z; Houria AB; Ayari T; Al Mogren MM; Hochlaf M; Jackson WM; Ng CY
    Phys Chem Chem Phys; 2015 May; 17(17):11752-62. PubMed ID: 25868654
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ab initio study of the VUV-induced multistate photodynamics of formaldehyde.
    Gómez-Carrasco S; Müller T; Köppel H
    J Phys Chem A; 2010 Nov; 114(43):11436-49. PubMed ID: 20931949
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.