These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 35575073)

  • 1. Context-Dependent Cognitive Workload Monitoring using Pupillometry for Control Room Operators to Prevent Overload.
    Bhavsar P
    IISE Trans Occup Ergon Hum Factors; 2022; 10(2):91-103. PubMed ID: 35575073
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Machine learning-based analysis of operator pupillary response to assess cognitive workload in clinical ultrasound imaging.
    Sharma H; Drukker L; Papageorghiou AT; Noble JA
    Comput Biol Med; 2021 Aug; 135():104589. PubMed ID: 34198044
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determining Cognitive Workload Using Physiological Measurements: Pupillometry and Heart-Rate Variability.
    Ma X; Monfared R; Grant R; Goh YM
    Sensors (Basel); 2024 Mar; 24(6):. PubMed ID: 38544272
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development and validation of a task load index for process control room operators (PCRO-TLX).
    Kazemi R; Cousins R; Smith A; Salesi M; Alibeygian F; Zendehbodi H; Mokarami H
    Ergonomics; 2023 Dec; 66(12):2121-2132. PubMed ID: 36861453
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measuring cognitive workload in the nuclear control room: a review.
    Braarud PØ
    Ergonomics; 2024 Jun; 67(6):849-865. PubMed ID: 38279638
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increased Postural Demand Is Associated With Greater Cognitive Workload in Healthy Young Adults: A Pupillometry Study.
    Kahya M; Wood TA; Sosnoff JJ; Devos H
    Front Hum Neurosci; 2018; 12():288. PubMed ID: 30072883
    [No Abstract]   [Full Text] [Related]  

  • 7. Transitions Between Low and High Levels of Mental Workload can Improve Multitasking Performance.
    Devlin SP; Moacdieh NM; Wickens CD; Riggs SL
    IISE Trans Occup Ergon Hum Factors; 2020; 8(2):72-87. PubMed ID: 32673167
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An Investigation of Speech Features, Plant System Alarms, and Operator-System Interaction for the Classification of Operator Cognitive Workload During Dynamic Work.
    Braarud PØ; Bodal T; Hulsund JE; Louka MN; Nihlwing C; Nystad E; Svengren H; Wingstedt E
    Hum Factors; 2021 Aug; 63(5):736-756. PubMed ID: 33054415
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physiological measures of operators' mental state in supervisory process control tasks: a scoping review.
    Pütz S; Mertens A; Chuang L; Nitsch V
    Ergonomics; 2024 Jun; 67(6):801-830. PubMed ID: 38031407
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cognitive task analysis and workload classification.
    Knisely BM; Joyner JS; Vaughn-Cooke M
    MethodsX; 2021; 8():101235. PubMed ID: 34434758
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Impact of Information Integration in a Simulation of Future Submarine Command and Control.
    Michailovs S; Pond S; Schmitt M; Irons J; Stoker M; Visser TAW; Huf S; Loft S
    Hum Factors; 2023 Nov; 65(7):1473-1490. PubMed ID: 34579591
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation of eye movement measures of mental workload in healthcare: Can pupil dilations reflect fatigue or overload when it comes to health information system use?
    Lisanne K; Jonathan G; Rainer R; Bernhard B
    Appl Ergon; 2024 Jan; 114():104150. PubMed ID: 37918277
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Level of automation effects on performance, situation awareness and workload in a dynamic control task.
    Endsley MR; Kaber DB
    Ergonomics; 1999 Mar; 42(3):462-92. PubMed ID: 10048306
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optical brain monitoring for operator training and mental workload assessment.
    Ayaz H; Shewokis PA; Bunce S; Izzetoglu K; Willems B; Onaral B
    Neuroimage; 2012 Jan; 59(1):36-47. PubMed ID: 21722738
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Eye-Tracking in Physical Human-Robot Interaction: Mental Workload and Performance Prediction.
    Upasani S; Srinivasan D; Zhu Q; Du J; Leonessa A
    Hum Factors; 2024 Aug; 66(8):2104-2119. PubMed ID: 37793896
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development and evaluation of a monitoring-aid system for a nuclear power plant in control room system manipulation.
    Lin JT; Chen YC; Wu SC; Hwang SL
    Work; 2017; 57(4):611-625. PubMed ID: 28826200
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Review of the Use of Gaze and Pupil Metrics to Assess Mental Workload in Gamified and Simulated Sensorimotor Tasks.
    Gorin H; Patel J; Qiu Q; Merians A; Adamovich S; Fluet G
    Sensors (Basel); 2024 Mar; 24(6):. PubMed ID: 38544022
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of cognitive conflict during unexpected robot behavior under different mental workload conditions in a physical human-robot collaboration.
    John AR; Singh AK; Gramann K; Liu D; Lin CT
    J Neural Eng; 2024 Mar; 21(2):. PubMed ID: 38295415
    [No Abstract]   [Full Text] [Related]  

  • 19. Mental workload assessment by monitoring brain, heart, and eye with six biomedical modalities during six cognitive tasks.
    Mark JA; Curtin A; Kraft AE; Ziegler MD; Ayaz H
    Front Neuroergon; 2024; 5():1345507. PubMed ID: 38533517
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cognitive demands and mental workload: A filed study of the mining control room operators.
    Mohammadian M; Parsaei H; Mokarami H; Kazemi R
    Heliyon; 2022 Feb; 8(2):e08860. PubMed ID: 35198754
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.