These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 35575184)

  • 41. Superspreading on Immersed Gel Surfaces for the Confined Synthesis of Thin Polymer Films.
    Zhang P; Zhang F; Zhao C; Wang S; Liu M; Jiang L
    Angew Chem Int Ed Engl; 2016 Mar; 55(11):3615-9. PubMed ID: 26880685
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Superhydrophobic surfaces developed by mimicking hierarchical surface morphology of lotus leaf.
    Latthe SS; Terashima C; Nakata K; Fujishima A
    Molecules; 2014 Apr; 19(4):4256-83. PubMed ID: 24714190
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Bioinspired Slippery Surfaces for Liquid Manipulation from Tiny Droplet to Bulk Fluid.
    Wang G; Ma F; Zhu L; Zhu P; Tang L; Hu H; Liu L; Li S; Zeng Z; Wang L; Xue Q
    Adv Mater; 2024 Sep; 36(37):e2311489. PubMed ID: 38696759
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Antisurfactant (Autophobic) Behavior of Superspreader Surfactant Solutions.
    Bera B; Backus EHG; Carrier O; Bonn M; Shahidzadeh N; Bonn D
    Langmuir; 2021 May; 37(20):6243-6247. PubMed ID: 33983746
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Adhesion behaviors on four special wettable surfaces: natural sources, mechanisms, fabrications and applications.
    Wang Y; Guo Z; Liu W
    Soft Matter; 2021 May; 17(19):4895-4928. PubMed ID: 33942819
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Are Graphitic Surfaces Hydrophobic?
    Kozbial A; Zhou F; Li Z; Liu H; Li L
    Acc Chem Res; 2016 Dec; 49(12):2765-2773. PubMed ID: 27935273
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effects of surface wettability and liquid viscosity on the dynamic wetting of individual drops.
    Chen L; Bonaccurso E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):022401. PubMed ID: 25215736
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Metallic surfaces with special wettability.
    Liu K; Jiang L
    Nanoscale; 2011 Mar; 3(3):825-38. PubMed ID: 21212900
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Fundamentals and utilization of solid/ liquid phase boundary interactions on functional surfaces.
    Mérai L; Deák Á; Dékány I; Janovák L
    Adv Colloid Interface Sci; 2022 May; 303():102657. PubMed ID: 35364433
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Dynamic wetting and spreading and the role of topography.
    McHale G; Newton MI; Shirtcliffe NJ
    J Phys Condens Matter; 2009 Nov; 21(46):464122. PubMed ID: 21715886
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Evaporation-Induced Wetting Transition of Nanodroplets on Nanopatterned Surfaces with Concentric Rings: Surface Geometry and Wettability Effects.
    Gao S; Long J; Liu W; Liu Z
    Langmuir; 2019 Jul; 35(29):9546-9553. PubMed ID: 31298861
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Rational design of materials interface at nanoscale towards intelligent oil-water separation.
    Ge M; Cao C; Huang J; Zhang X; Tang Y; Zhou X; Zhang K; Chen Z; Lai Y
    Nanoscale Horiz; 2018 May; 3(3):235-260. PubMed ID: 32254075
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Scaling Up Nature: Large Area Flexible Biomimetic Surfaces.
    Li Y; John J; Kolewe KW; Schiffman JD; Carter KR
    ACS Appl Mater Interfaces; 2015 Oct; 7(42):23439-44. PubMed ID: 26423494
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Fabrication of patterned solid surfaces with highly controllable wettability.
    Wang M; Guo CF; Wang X; Xiang B; Qiu M; He T; Yang H; Chen Y; Dong J; Liu Q; Ruan S
    RSC Adv; 2021 Sep; 11(51):31877-31883. PubMed ID: 35495539
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Superspreading: mechanisms and molecular design.
    Theodorakis PE; Müller EA; Craster RV; Matar OK
    Langmuir; 2015 Mar; 31(8):2304-9. PubMed ID: 25658859
    [TBL] [Abstract][Full Text] [Related]  

  • 57. From petal effect to lotus effect: a facile solution immersion process for the fabrication of super-hydrophobic surfaces with controlled adhesion.
    Cheng Z; Du M; Lai H; Zhang N; Sun K
    Nanoscale; 2013 Apr; 5(7):2776-83. PubMed ID: 23429404
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Polydimethylsiloxane-Based Superhydrophobic Surfaces on Steel Substrate: Fabrication, Reversibly Extreme Wettability and Oil-Water Separation.
    Su X; Li H; Lai X; Zhang L; Liang T; Feng Y; Zeng X
    ACS Appl Mater Interfaces; 2017 Jan; 9(3):3131-3141. PubMed ID: 28032982
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Superhydrophobic surfaces from hierarchically structured wrinkled polymers.
    Li Y; Dai S; John J; Carter KR
    ACS Appl Mater Interfaces; 2013 Nov; 5(21):11066-73. PubMed ID: 24131534
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Experimental investigations on drag-reduction characteristics of bionic surface with water-trapping microstructures of fish scales.
    Wu L; Jiao Z; Song Y; Liu C; Wang H; Yan Y
    Sci Rep; 2018 Aug; 8(1):12186. PubMed ID: 30111771
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.