These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
191 related articles for article (PubMed ID: 35575184)
61. Superspreading - Has the mystery been unraveled? Venzmer J Adv Colloid Interface Sci; 2021 Feb; 288():102343. PubMed ID: 33359962 [TBL] [Abstract][Full Text] [Related]
62. Bioinspired surfaces with wettability for antifouling application. Li Z; Guo Z Nanoscale; 2019 Dec; 11(47):22636-22663. PubMed ID: 31755511 [TBL] [Abstract][Full Text] [Related]
63. Bioinspired hierarchical colloidal crystal paper with Janus wettability for oil/water separation and heavy metal ion removal. Zhang L; Chen Y; Cao Y; Li S; Lu W; Cao W; Zhu J; Bao W; Shao M; Gan Z; Di Y; Xing F; Li X; Zhang L; Liu C Nanoscale; 2023 Jul; 15(29):12212-12219. PubMed ID: 37395090 [TBL] [Abstract][Full Text] [Related]
64. Wetting behaviour during evaporation and condensation of water microdroplets on superhydrophobic patterned surfaces. Jung YC; Bhushan B J Microsc; 2008 Jan; 229(Pt 1):127-40. PubMed ID: 18173651 [TBL] [Abstract][Full Text] [Related]
65. Biomimetic super-lyophobic and super-lyophilic materials applied for oil/water separation: a new strategy beyond nature. Wang B; Liang W; Guo Z; Liu W Chem Soc Rev; 2015 Jan; 44(1):336-61. PubMed ID: 25311259 [TBL] [Abstract][Full Text] [Related]
66. Molecular Dynamics Simulations of Oil-Water Wetting Models of Organic Matter and Minerals in Shale at the Nanometer Scale. Dong Z; Xue H; Li B; Tian S; Lu S; Lu S J Nanosci Nanotechnol; 2021 Jan; 21(1):85-97. PubMed ID: 33213615 [TBL] [Abstract][Full Text] [Related]
67. Femtosecond Laser Thermal Accumulation-Triggered Micro-/Nanostructures with Patternable and Controllable Wettability Towards Liquid Manipulating. Yin K; Wang L; Deng Q; Huang Q; Jiang J; Li G; He J Nanomicro Lett; 2022 Apr; 14(1):97. PubMed ID: 35394233 [TBL] [Abstract][Full Text] [Related]
68. On the nature of the superspreaders. Sankaran A; Karakashev SI; Sett S; Grozev N; Yarin AL Adv Colloid Interface Sci; 2019 Jan; 263():1-18. PubMed ID: 30471569 [TBL] [Abstract][Full Text] [Related]
69. Viscous Oil De-Wetting Surfaces Based on Robust Superhydrophilic Barium Sulfate Nanocoating. Deng W; Wang G; Tang L; Zeng Z; Ren T; Xue Q ACS Appl Mater Interfaces; 2021 Jun; 13(23):27674-27686. PubMed ID: 34086434 [TBL] [Abstract][Full Text] [Related]
70. Wetting Behavior of Metal-Catalyzed Chemical Vapor Deposition-Grown One-Dimensional Cubic-SiC Nanostructures. Khan A; Huang K; Hu M; Yu X; Yang D Langmuir; 2018 May; 34(18):5214-5224. PubMed ID: 29656649 [TBL] [Abstract][Full Text] [Related]
71. Robust bioinspired surfaces and their exploitation for petroleum hydrocarbon remediation. Ali N; Gyllye EL; Duanmu C; Yang Y; Khan A; Ali F; Bilal M; Iqbal HMN Environ Sci Pollut Res Int; 2022 Sep; 29(41):61881-61895. PubMed ID: 34545517 [TBL] [Abstract][Full Text] [Related]
72. Molecular-Structure-Induced Under-Liquid Dual Superlyophobic Surfaces. Zhao Z; Ning Y; Jin X; Ben S; Zha J; Su B; Tian D; Liu K; Jiang L ACS Nano; 2020 Nov; 14(11):14869-14877. PubMed ID: 33164493 [TBL] [Abstract][Full Text] [Related]
73. Rationalization of the behavior of solid-liquid surface free energy of water in Cassie and Wenzel wetting states on rugged solid surfaces at the nanometer scale. Leroy F; Müller-Plathe F Langmuir; 2011 Jan; 27(2):637-45. PubMed ID: 21142209 [TBL] [Abstract][Full Text] [Related]
74. Probing Liquid-Solid and Vapor-Liquid-Solid Interfaces of Hierarchical Surfaces Using High-Resolution Microscopy. Flynn Bolte KT; Balaraman RP; Jiao K; Tustison M; Kirkwood KS; Zhou C; Kohli P Langmuir; 2018 Mar; 34(12):3720-3730. PubMed ID: 29486565 [TBL] [Abstract][Full Text] [Related]
75. Facile fabrication of a superamphiphobic surface on the copper substrate. Zhu X; Zhang Z; Xu X; Men X; Yang J; Zhou X; Xue Q J Colloid Interface Sci; 2012 Feb; 367(1):443-9. PubMed ID: 22074690 [TBL] [Abstract][Full Text] [Related]
76. Life and death of a fakir droplet: impalement transitions on superhydrophobic surfaces. Moulinet S; Bartolo D Eur Phys J E Soft Matter; 2007 Nov; 24(3):251-60. PubMed ID: 18060595 [TBL] [Abstract][Full Text] [Related]
77. Slippery Liquid-Like Solid Surfaces with Promising Antibiofilm Performance under Both Static and Flow Conditions. Zhu Y; McHale G; Dawson J; Armstrong S; Wells G; Han R; Liu H; Vollmer W; Stoodley P; Jakubovics N; Chen J ACS Appl Mater Interfaces; 2022 Feb; 14(5):6307-6319. PubMed ID: 35099179 [TBL] [Abstract][Full Text] [Related]
79. Structure and reactivity of water at biomaterial surfaces. Vogler EA Adv Colloid Interface Sci; 1998 Feb; 74():69-117. PubMed ID: 9561719 [TBL] [Abstract][Full Text] [Related]
80. Janus Polyvinylidene Fluoride Membrane with Extremely Opposite Wetting Surfaces via One Single-Step Unidirectional Segregation Strategy. Li T; Liu F; Zhang S; Lin H; Wang J; Tang CY ACS Appl Mater Interfaces; 2018 Jul; 10(29):24947-24954. PubMed ID: 29968463 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]