BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

289 related articles for article (PubMed ID: 35575291)

  • 21. Nucleotide- and nucleoside-converting ectoenzymes: Important modulators of purinergic signalling cascade.
    Yegutkin GG
    Biochim Biophys Acta; 2008 May; 1783(5):673-94. PubMed ID: 18302942
    [TBL] [Abstract][Full Text] [Related]  

  • 22. ATP release, generation and hydrolysis in exocrine pancreatic duct cells.
    Kowal JM; Yegutkin GG; Novak I
    Purinergic Signal; 2015 Dec; 11(4):533-50. PubMed ID: 26431833
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Highly Potent and Selective Ectonucleoside Triphosphate Diphosphohydrolase (ENTPDase1, 2, 3 and 8) Inhibitors Having 2-substituted-7- trifluoromethyl-thiadiazolopyrimidones Scaffold.
    Afzal S; Zaib S; Jafari B; Langer P; Lecka J; Sévigny J; Iqbal J
    Med Chem; 2020; 16(5):689-702. PubMed ID: 31203806
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evidence that acute taurine treatment alters extracellular AMP hydrolysis and adenosine deaminase activity in zebrafish brain membranes.
    Rosemberg DB; Kist LW; Etchart RJ; Rico EP; Langoni AS; Dias RD; Bogo MR; Bonan CD; Souza DO
    Neurosci Lett; 2010 Sep; 481(2):105-9. PubMed ID: 20600599
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Extracellular ATP Selectively Upregulates Ecto-Nucleoside Triphosphate Diphosphohydrolase 2 and Ecto-5'-Nucleotidase by Rat Cortical Astrocytes In Vitro.
    Brisevac D; Adzic M; Laketa D; Parabucki A; Milosevic M; Lavrnja I; Bjelobaba I; Sévigny J; Kipp M; Nedeljkovic N
    J Mol Neurosci; 2015 Nov; 57(3):452-62. PubMed ID: 26080748
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Regulation of proliferation of LLC-MK2 cells by nucleosides and nucleotides: the role of ecto-enzymes.
    Lemmens R; Vanduffel L; Teuchy H; Culic O
    Biochem J; 1996 Jun; 316 ( Pt 2)(Pt 2):551-7. PubMed ID: 8687400
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ectonucleotidases in Acute and Chronic Inflammation.
    Giuliani AL; Sarti AC; Di Virgilio F
    Front Pharmacol; 2020; 11():619458. PubMed ID: 33613285
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Lambda-cyhalothrin exposure alters purine nucleotide hydrolysis and nucleotidase gene expression pattern in platelets and liver of rats.
    Aouey B; Fares E; Chtourou Y; Bouchard M; Fetoui H
    Chem Biol Interact; 2019 Sep; 311():108796. PubMed ID: 31421116
    [TBL] [Abstract][Full Text] [Related]  

  • 29. History of ectonucleotidases and their role in purinergic signaling.
    Zimmermann H
    Biochem Pharmacol; 2021 May; 187():114322. PubMed ID: 33161020
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Is Ecto-nucleoside Triphosphate Diphosphohydrolase (NTPDase)-based Therapy of Central Nervous System Disorders Possible?
    Roszek K; Czarnecka J
    Mini Rev Med Chem; 2015; 15(1):5-20. PubMed ID: 25694082
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The effects of angiotensin II and genetic hypertension upon extracellular nucleotide hydrolysis by rat platelet ectoenzymes.
    Fürstenau CR; Trentin DS; Barreto-Chaves ML; Sarkis JJ
    Thromb Res; 2007; 120(6):877-84. PubMed ID: 17343900
    [TBL] [Abstract][Full Text] [Related]  

  • 32. CD73 Controls Extracellular Adenosine Generation in the Trigeminal Nociceptive Nerves.
    Liu X; Ma L; Zhang S; Ren Y; Dirksen RT
    J Dent Res; 2017 Jun; 96(6):671-677. PubMed ID: 28530470
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ectonucleotidases in the hippocampus: Spatial distribution and expression after ovariectomy and estradiol replacement.
    Grković I; Mitrović N; Dragić M
    Vitam Horm; 2022; 118():199-221. PubMed ID: 35180927
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biochemistry, localization and functional roles of ecto-nucleotidases in the nervous system.
    Zimmermann H
    Prog Neurobiol; 1996 Aug; 49(6):589-618. PubMed ID: 8912394
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The Role of Purinergic Signaling in Heart Transplantation.
    Jiang Y; Lin J; Zheng H; Zhu P
    Front Immunol; 2022; 13():826943. PubMed ID: 35529844
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Origin, utilization, and recycling of nucleosides in the central nervous system.
    Ipata PL
    Adv Physiol Educ; 2011 Dec; 35(4):342-6. PubMed ID: 22139768
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Distribution of ecto-nucleotidases in mouse sensory circuits suggests roles for nucleoside triphosphate diphosphohydrolase-3 in nociception and mechanoreception.
    Vongtau HO; Lavoie EG; Sévigny J; Molliver DC
    Neuroscience; 2011 Oct; 193():387-98. PubMed ID: 21807070
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Extracellular nucleotides and nucleosides as signalling molecules.
    Giuliani AL; Sarti AC; Di Virgilio F
    Immunol Lett; 2019 Jan; 205():16-24. PubMed ID: 30439478
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Homo- and heteroexchange of adenine nucleotides and nucleosides in rat hippocampal slices by the nucleoside transport system.
    Sperlágh B; Szabó G; Erdélyi F; Baranyi M; Vizi ES
    Br J Pharmacol; 2003 Jun; 139(3):623-33. PubMed ID: 12788822
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Synthesis, characterization and biological evaluation of thiadiazole amide derivatives as nucleoside triphosphate diphosphohydrolases (NTPDases) inhibitors.
    Abbas S; Afzal S; Nadeem H; Hussain D; Langer P; Sévigny J; Ashraf Z; Iqbal J
    Bioorg Chem; 2022 Jan; 118():105456. PubMed ID: 34800887
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.