These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 35575505)

  • 61. Changes in rays' swimming stability due to the phase difference between left and right pectoral fin movements.
    Sumikawa H; Naraoka Y; Fukue T; Miyoshi T
    Sci Rep; 2022 Feb; 12(1):2362. PubMed ID: 35149702
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Shape memory alloy-driven undulatory locomotion of a soft biomimetic ray robot.
    Kim HS; Heo JK; Choi IG; Ahn SH; Chu WS
    Bioinspir Biomim; 2021 Sep; 16(6):. PubMed ID: 34020436
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Fish without Tail Fins-Exploring the Function of Tail Morphology of the First Vertebrates.
    Rival DE; Yang W; Caron JB
    Integr Comp Biol; 2021 Jul; 61(1):37-49. PubMed ID: 33690846
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Turbulence: does vorticity affect the structure and shape of body and fin propulsors?
    Webb PW; Cotel AJ
    Integr Comp Biol; 2010 Dec; 50(6):1155-66. PubMed ID: 21558264
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Numerical Study on the Hydrodynamic Performance of a Flexible Caudal Fin with Different Trailing-Edge Shapes.
    Khin MHW; Obi S
    Biomimetics (Basel); 2024 Jul; 9(7):. PubMed ID: 39056886
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Functional morphology of the fin rays of teleost fishes.
    Flammang BE; Alben S; Madden PG; Lauder GV
    J Morphol; 2013 Sep; 274(9):1044-59. PubMed ID: 23720195
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Batoid locomotion: effects of speed on pectoral fin deformation in the little skate,
    Di Santo V; Blevins EL; Lauder GV
    J Exp Biol; 2017 Feb; 220(Pt 4):705-712. PubMed ID: 27965272
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Optimal specific wavelength for maximum thrust production in undulatory propulsion.
    Nangia N; Bale R; Chen N; Hanna Y; Patankar NA
    PLoS One; 2017; 12(6):e0179727. PubMed ID: 28654649
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Hydrodynamic function of dorsal and anal fins in brook trout (Salvelinus fontinalis).
    Standen EM; Lauder GV
    J Exp Biol; 2007 Jan; 210(Pt 2):325-39. PubMed ID: 17210968
    [TBL] [Abstract][Full Text] [Related]  

  • 70. The effect of fin ray flexural rigidity on the propulsive forces generated by a biorobotic fish pectoral fin.
    Tangorra JL; Lauder GV; Hunter IW; Mittal R; Madden PG; Bozkurttas M
    J Exp Biol; 2010 Dec; 213(Pt 23):4043-54. PubMed ID: 21075946
    [TBL] [Abstract][Full Text] [Related]  

  • 71. A dual caudal-fin miniature robotic fish with an integrated oscillation and jet propulsive mechanism.
    Liao P; Zhang S; Sun D
    Bioinspir Biomim; 2018 Mar; 13(3):036007. PubMed ID: 29359705
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Thrust Improvement of a Biomimetic Robotic Fish by Using a Deformable Caudal Fin.
    Shao H; Dong B; Zheng C; Li T; Zuo Q; Xu Y; Fang H; He K; Xie F
    Biomimetics (Basel); 2022 Aug; 7(3):. PubMed ID: 35997433
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Hydrodynamic fin function of brief squid, Lolliguncula brevis.
    Stewart WJ; Bartol IK; Krueger PS
    J Exp Biol; 2010 Jun; 213(Pt 12):2009-24. PubMed ID: 20511514
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Hydrodynamic analysis of rigid and flexible pectoral fins.
    Li N; Su Y; Wang Z; Liu W; Ashraf MA; Zhang Z
    J Environ Biol; 2016 Sep; 37(5 Spec No):1105-1116. PubMed ID: 29989742
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Biomechanics of swimming in the pufferfish Diodon holocanthus: propulsive momentum enhancement is an adaptation for thrust production in an undulatory median and paired-fin swimmer.
    Blake RW; Chan KH
    J Fish Biol; 2011 Dec; 79(7):1774-94. PubMed ID: 22141887
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Trout-like multifunctional piezoelectric robotic fish and energy harvester.
    Tan D; Wang YC; Kohtanen E; Erturk A
    Bioinspir Biomim; 2021 Jun; 16(4):. PubMed ID: 33984855
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Propulsive performance of biologically inspired flapping foils at high Reynolds numbers.
    Techet AH
    J Exp Biol; 2008 Jan; 211(Pt 2):274-9. PubMed ID: 18165255
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Volumetric flow imaging reveals the importance of vortex ring formation in squid swimming tail-first and arms-first.
    Bartol IK; Krueger PS; Jastrebsky RA; Williams S; Thompson JT
    J Exp Biol; 2016 Feb; 219(Pt 3):392-403. PubMed ID: 26643088
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Fin sweep angle does not determine flapping propulsive performance.
    Zurman-Nasution AN; Ganapathisubramani B; Weymouth GD
    J R Soc Interface; 2021 May; 18(178):20210174. PubMed ID: 34034533
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Functional morphology of endurance swimming performance and gait transition strategies in balistoid fishes.
    George AB; Westneat MW
    J Exp Biol; 2019 Apr; 222(Pt 8):. PubMed ID: 30962280
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.