These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 35575645)

  • 1. Boundary-Monte Carlo Method for Neutral and Charged Confined Fluids.
    Vo P; Forsman J; Woodward CE
    J Chem Theory Comput; 2022 Jun; 18(6):3766-3780. PubMed ID: 35575645
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Local Grand Canonical Monte Carlo Simulation Method for Confined Fluids.
    Vo P; Lu H; Ma K; Forsman J; Woodward CE
    J Chem Theory Comput; 2019 Dec; 15(12):6944-6957. PubMed ID: 31665596
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Grand-canonical Monte Carlo method for Donnan equilibria.
    Barr SA; Panagiotopoulos AZ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 2):016703. PubMed ID: 23005559
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermodynamic characterization of fluids confined in heterogeneous pores by monte carlo simulations in the grand canonical and the isobaric-isothermal ensembles.
    Puibasset J
    J Phys Chem B; 2005 Apr; 109(16):8185-94. PubMed ID: 16851957
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Donnan equilibrium in charged slit-pores from a hybrid nonequilibrium molecular dynamics/Monte Carlo method with ions and solvent exchange.
    Kim J; Rotenberg B
    J Chem Phys; 2024 Aug; 161(5):. PubMed ID: 39087531
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of pore geometry on the compressibility of a confined simple fluid.
    Dobrzanski CD; Maximov MA; Gor GY
    J Chem Phys; 2018 Feb; 148(5):054503. PubMed ID: 29421901
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of Ionic Hydration Free Energies with Grand Canonical Monte Carlo/Molecular Dynamics Simulations in Explicit Water.
    Sun D; Lakkaraju SK; Jo S; MacKerell AD
    J Chem Theory Comput; 2018 Oct; 14(10):5290-5302. PubMed ID: 30183291
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular simulations of confined liquids: an alternative to the grand canonical Monte Carlo simulations.
    Ghoufi A; Morineau D; Lefort R; Hureau I; Hennous L; Zhu H; Szymczyk A; Malfreyt P; Maurin G
    J Chem Phys; 2011 Feb; 134(7):074104. PubMed ID: 21341825
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Open-boundary Hamiltonian adaptive resolution. From grand canonical to non-equilibrium molecular dynamics simulations.
    Heidari M; Kremer K; Golestanian R; Potestio R; Cortes-Huerto R
    J Chem Phys; 2020 May; 152(19):194104. PubMed ID: 33687261
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrolytes in regimes of strong confinement: surface charge modulations, osmotic equilibrium and electroneutrality.
    Bakhshandeh A; Segala M; Colla T
    Soft Matter; 2020 Dec; 16(46):10488-10505. PubMed ID: 33073284
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface excess free energy of simple fluids confined in cylindrical pores by isothermal-isobaric Monte Carlo: influence of pore size.
    Puibasset J
    J Chem Phys; 2007 May; 126(18):184701. PubMed ID: 17508818
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phase transitions of ionic fluids in nanoporous electrodes.
    Emrani A; Woodward CE; Forsman J
    Eur Phys J E Soft Matter; 2023 Oct; 46(10):91. PubMed ID: 37792072
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimation of absorbed radiation doses to skin and S-values for organs at risk due to nasal administration of PET agents using Monte Carlo simulations.
    O'Doherty J; Mangini CD; Hamby DM; Boozer D; Singh N; Hippeläinen E
    Med Phys; 2021 Feb; 48(2):871-880. PubMed ID: 33330987
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of non-ionizing excitations on the diffusion of ion species and inter-track correlations in FLASH ultra-high dose rate radiotherapy.
    Abolfath R; Baikalov A; Bartzsch S; Afshordi N; Mohan R
    Phys Med Biol; 2022 May; 67(10):. PubMed ID: 35453139
    [No Abstract]   [Full Text] [Related]  

  • 15. Determination of the Residual Entropy of Simple Mixtures by Monte Carlo Simulation.
    Detmar E; Yazdi Nezhad S; Deiters UK
    Langmuir; 2017 Oct; 33(42):11603-11610. PubMed ID: 28732441
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monte Carlo simulations of hydrogen adsorption in alkali-doped single-walled carbon nanotubes.
    Hu N; Sun X; Hsu A
    J Chem Phys; 2005 Jul; 123(4):044708. PubMed ID: 16095385
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Parallel canonical Monte Carlo simulations through sequential updating of particles.
    O'Keeffe CJ; Orkoulas G
    J Chem Phys; 2009 Apr; 130(13):134109. PubMed ID: 19355719
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Radiation induced current in the RF coils of integrated linac-MR systems: the effect of buildup and magnetic field.
    Burke B; Ghila A; Fallone BG; Rathee S
    Med Phys; 2012 Aug; 39(8):5004-14. PubMed ID: 22894426
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermodynamic pressure of simple fluids confined in cylindrical nanopores by isothermal-isobaric Monte Carlo: influence of fluid/substrate interactions.
    Puibasset J
    J Chem Phys; 2007 Aug; 127(7):074702. PubMed ID: 17718622
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Methane aqueous fluids in montmorillonite clay interlayer under near-surface geological conditions: a grand canonical Monte Carlo and molecular dynamics simulation study.
    Rao Q; Leng Y
    J Phys Chem B; 2014 Sep; 118(37):10956-65. PubMed ID: 25167085
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.