These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 35575796)

  • 1. Synthesis of 2,5-disubstituted selenophenes
    Zhong W; Li M; Jin Y; Jiang H; Wu W
    Chem Commun (Camb); 2022 Jun; 58(45):6522-6525. PubMed ID: 35575796
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis of 2,5-disubstituted 3-iodofurans via palladium-catalyzed coupling and iodocyclization of terminal alkynes.
    Chen Z; Huang G; Jiang H; Huang H; Pan X
    J Org Chem; 2011 Feb; 76(4):1134-9. PubMed ID: 21235260
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct Electrooxidative Selenylation/Cyclization of Alkynes: Access to Functionalized Benzo[
    Hasimujiang B; Lin S; Zheng C; Zeng Y; Ruan Z
    Molecules; 2022 Sep; 27(19):. PubMed ID: 36234851
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of 2,3-disubstituted benzo[b]furans by the palladium-catalyzed coupling of o-iodoanisoles and terminal alkynes, followed by electrophilic cyclization.
    Yue D; Yao T; Larock RC
    J Org Chem; 2005 Dec; 70(25):10292-6. PubMed ID: 16323837
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Palladium-catalyzed difunctionalization of internal alkynes via highly regioselective 6-endo cyclization and alkenylation of enynoates: synthesis of multisubstituted pyrones.
    Tian PP; Cai SH; Liang QJ; Zhou XY; Xu YH; Loh TP
    Org Lett; 2015 Apr; 17(7):1636-9. PubMed ID: 25789819
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrophilic Cyclization Involving Carbon-Selenium/Carbon-Halide Bond Formation: Synthesis of 3-Substituted Selenophenes.
    Casola KK; Gomes MR; Back DF; Zeni G
    J Org Chem; 2018 Jun; 83(12):6706-6718. PubMed ID: 29847130
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of phenanthrenes through copper-catalyzed cross-coupling of N-tosylhydrazones with terminal alkynes.
    Hossain ML; Ye F; Liu Z; Xia Y; Shi Y; Zhou L; Zhang Y; Wang J
    J Org Chem; 2014 Sep; 79(18):8689-99. PubMed ID: 25153826
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A direct synthesis of selenophenes by Cu-catalyzed one-pot addition of a selenium moiety to (E,E)-1,3-dienyl bromides and subsequent nucleophilic cyclization.
    Maity P; Kundu D; Roy R; Ranu BC
    Org Lett; 2014 Aug; 16(16):4122-5. PubMed ID: 25060565
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis of 3-sulfenyl- and 3-selenylindoles by the Pd/Cu-catalyzed coupling of N,N-dialkyl-2-iodoanilines and terminal alkynes, followed by n-Bu(4)NI-induced electrophilic cyclization.
    Chen Y; Cho CH; Shi F; Larock RC
    J Org Chem; 2009 Sep; 74(17):6802-11. PubMed ID: 19663396
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Facile synthesis of benzofurans via copper-catalyzed aerobic oxidative cyclization of phenols and alkynes.
    Zeng W; Wu W; Jiang H; Huang L; Sun Y; Chen Z; Li X
    Chem Commun (Camb); 2013 Jul; 49(59):6611-3. PubMed ID: 23772445
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis of indenes by the transition metal-mediated carboannulation of alkynes.
    Zhang D; Liu Z; Yum EK; Larock RC
    J Org Chem; 2007 Jan; 72(1):251-62. PubMed ID: 17194107
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regioselective formation of 2,5-disubstituted oxazoles via copper(I)-catalyzed cycloaddition of acyl azides and 1-alkynes.
    Cano I; Álvarez E; Nicasio MC; Pérez PJ
    J Am Chem Soc; 2011 Jan; 133(2):191-3. PubMed ID: 21171608
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quick and highly efficient copper-catalyzed cycloaddition of organic azides with terminal alkynes.
    Wang D; Zhao M; Liu X; Chen Y; Li N; Chen B
    Org Biomol Chem; 2012 Jan; 10(2):229-31. PubMed ID: 22024945
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gold(I)-catalyzed regioselective inter-/intramolecular addition cascade of di- and triynes for direct construction of substituted naphthalenes.
    Naoe S; Suzuki Y; Hirano K; Inaba Y; Oishi S; Fujii N; Ohno H
    J Org Chem; 2012 Jun; 77(11):4907-16. PubMed ID: 22568806
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient synthesis of aminomethylated pyrroloindoles and dipyrrolopyridines via controlled copper-catalyzed domino multicomponent coupling and bis-cyclization.
    Suzuki Y; Ohta Y; Oishi S; Fujii N; Ohno H
    J Org Chem; 2009 Jun; 74(11):4246-51. PubMed ID: 19425571
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis of 3-iodoindoles by electrophilic cyclization of N,N-dialkyl-2-(1-alkynyl)anilines.
    Yue D; Larock RC
    Org Lett; 2004 Mar; 6(6):1037-40. PubMed ID: 15012094
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Copper-catalyzed multicomponent coupling/cycloisomerization reaction between substituted 1-formyl-9H-β-carbolines, secondary amines, and substituted alkynes for the synthesis of substituted 3-aminoindolizino[8,7-b]indoles.
    Dighe SU; Hutait S; Batra S
    ACS Comb Sci; 2012 Dec; 14(12):665-72. PubMed ID: 23135420
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expeditious synthesis of phenanthrenes via CuBr2-catalyzed coupling of terminal alkynes and N-tosylhydrazones derived from o-formyl biphenyls.
    Ye F; Shi Y; Zhou L; Xiao Q; Zhang Y; Wang J
    Org Lett; 2011 Oct; 13(19):5020-3. PubMed ID: 21875127
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Facile one-pot synthesis of 4,5-disubstituted 1,2,3-(NH)-triazoles through Sonogashira coupling/1,3-dipolar cycloaddition of acid chlorides, terminal acetylenes, and sodium azide.
    Li J; Wang D; Zhang Y; Li J; Chen B
    Org Lett; 2009 Jul; 11(14):3024-7. PubMed ID: 19537825
    [TBL] [Abstract][Full Text] [Related]  

  • 20. One-pot Sonogashira coupling-cyclization toward regioselective synthesis of benzosultams.
    Debnath S; Mondal S
    J Org Chem; 2015 Apr; 80(8):3940-8. PubMed ID: 25802978
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.