BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 35576030)

  • 1. The strategy for conservation non-renewable natural resources through producing and application solid recovery fuel in the cement industry: a case study for Lithuania.
    Pitak I; Rinkevičius D; Kalpokaitė-Dičkuvienė R; Baltušnikas A; Denafas G
    Environ Sci Pollut Res Int; 2022 Oct; 29(46):69618-69634. PubMed ID: 35576030
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of MRF residue as alternative fuel in cement production.
    Fyffe JR; Breckel AC; Townsend AK; Webber ME
    Waste Manag; 2016 Jan; 47(Pt B):276-84. PubMed ID: 26187294
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Refuse-derived fuel potential production for co-combustion in the cement industry in Algeria.
    Sakri A; Aouabed A; Nassour A; Nelles M
    Waste Manag Res; 2021 Sep; 39(9):1174-1184. PubMed ID: 33407010
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multi-Case Study on Environmental and Economic Benefits through Co-Burning Refuse-Derived Fuels and Sewage Sludge in Cement Industry.
    Wojtacha-Rychter K; Smoliński A
    Materials (Basel); 2022 Jun; 15(12):. PubMed ID: 35744235
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An integrated appraisal of energy recovery options in the United Kingdom using solid recovered fuel derived from municipal solid waste.
    Garg A; Smith R; Hill D; Longhurst PJ; Pollard SJ; Simms NJ
    Waste Manag; 2009 Aug; 29(8):2289-97. PubMed ID: 19443201
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of coal/solid recovered fuel (SRF) with coal/refuse derived fuel (RDF) in a fluidized bed reactor.
    Wagland ST; Kilgallon P; Coveney R; Garg A; Smith R; Longhurst PJ; Pollard SJ; Simms N
    Waste Manag; 2011 Jun; 31(6):1176-83. PubMed ID: 21288710
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Potential of solid recovered fuel production from autoclave treated healthcare waste in Sultanate of Oman.
    Al-Wahaibi M; Baird J
    J Air Waste Manag Assoc; 2024 May; 74(5):304-318. PubMed ID: 38359400
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Elemental balance of SRF production process: solid recovered fuel produced from municipal solid waste.
    Nasrullah M; Vainikka P; Hannula J; Hurme M; Oinas P
    Waste Manag Res; 2016 Jan; 34(1):38-46. PubMed ID: 26608898
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Energy implications of mechanical and mechanical-biological treatment compared to direct waste-to-energy.
    Cimpan C; Wenzel H
    Waste Manag; 2013 Jul; 33(7):1648-58. PubMed ID: 23660494
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Origins of major and minor ash constituents of solid recovered fuel for co-processing in the cement industry.
    Viczek SA; Aldrian A; Pomberger R; Sarc R
    Waste Manag; 2021 May; 126():423-432. PubMed ID: 33836393
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wastes as co-fuels: the policy framework for solid recovered fuel (SRF) in Europe, with UK implications.
    Garg A; Smith R; Hill D; Simms N; Pollard S
    Environ Sci Technol; 2007 Jul; 41(14):4868-74. PubMed ID: 17711195
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The application of SRF vs. RDF classification and specifications to the material flows of two mechanical-biological treatment plants of Rome: Comparison and implications.
    Di Lonardo MC; Franzese M; Costa G; Gavasci R; Lombardi F
    Waste Manag; 2016 Jan; 47(Pt B):195-205. PubMed ID: 26243051
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Refuse derived fuel (RDF) plasma torch gasification as a feasible route to produce low environmental impact syngas for the cement industry.
    López-Sabirón AM; Fleiger K; Schäfer S; Antoñanzas J; Irazustabarrena A; Aranda-Usón A; Ferreira GA
    Waste Manag Res; 2015 Aug; 33(8):715-22. PubMed ID: 26081643
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Case study of an MBT plant producing SRF for cement kiln co-combustion, coupled with a bioreactor landfill for process residues.
    Grosso M; Dellavedova S; Rigamonti L; Scotti S
    Waste Manag; 2016 Jan; 47(Pt B):267-75. PubMed ID: 26601731
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of fuel value and combustion characteristics of two different RDF samples.
    Sever Akdağ A; Atımtay A; Sanin FD
    Waste Manag; 2016 Jan; 47(Pt B):217-24. PubMed ID: 26360232
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of utilizing solid recovered fuel on the global warming potential of cement production and waste management system: A life cycle assessment approach.
    Khan MMH; Havukainen J; Horttanainen M
    Waste Manag Res; 2021 Apr; 39(4):561-572. PubMed ID: 33357123
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improving material and energy recovery from the sewage sludge and biomass residues.
    Kliopova I; Makarskienė K
    Waste Manag; 2015 Feb; 36():269-76. PubMed ID: 25481696
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Processing and properties of a solid energy fuel from municipal solid waste (MSW) and recycled plastics.
    Gug J; Cacciola D; Sobkowicz MJ
    Waste Manag; 2015 Jan; 35():283-92. PubMed ID: 25453320
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Classification and characterisation of SRF produced from different flows of processed MSW in the Navarra region and its co-combustion performance with olive tree pruning residues.
    Ramos Casado R; Arenales Rivera J; Borjabad García E; Escalada Cuadrado R; Fernández Llorente M; Bados Sevillano R; Pascual Delgado A
    Waste Manag; 2016 Jan; 47(Pt B):206-16. PubMed ID: 26072185
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterisation and composition identification of waste-derived fuels obtained from municipal solid waste using thermogravimetry: A review.
    Gerassimidou S; Velis CA; Williams PT; Komilis D
    Waste Manag Res; 2020 Sep; 38(9):942-965. PubMed ID: 32705957
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.