These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 35576476)

  • 1. Robotics in Vitreo-Retinal Surgery.
    Ramamurthy SR; Dave VP
    Semin Ophthalmol; 2022; 37(7-8):795-800. PubMed ID: 35576476
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Review of Robotic and OCT-Aided Systems for Vitreoretinal Surgery.
    Ahronovich EZ; Simaan N; Joos KM
    Adv Ther; 2021 May; 38(5):2114-2129. PubMed ID: 33813718
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Robotic-assisted surgery in ophthalmology.
    de Smet MD; Naus GJL; Faridpooya K; Mura M
    Curr Opin Ophthalmol; 2018 May; 29(3):248-253. PubMed ID: 29553953
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Robotising vitreoretinal surgeries.
    Mi H; MacLaren RE; Cehajic-Kapetanovic J
    Eye (Lond); 2024 Jul; ():. PubMed ID: 38965320
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Toward the Art of Robotic-assisted Vitreoretinal Surgery.
    Molaei A; Abedloo E; de Smet MD; Safi S; Khorshidifar M; Ahmadieh H; Khosravi MA; Daftarian N
    J Ophthalmic Vis Res; 2017; 12(2):212-218. PubMed ID: 28540014
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human/robotic interaction: vision limits performance in simulated vitreoretinal surgery.
    de Smet MD; de Jonge N; Iannetta D; Faridpooya K; van Oosterhout E; Naus G; Meenink TCM; Mura M; Beelen MJ
    Acta Ophthalmol; 2019 Nov; 97(7):672-678. PubMed ID: 30588753
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Artificial Intelligence, Digital Imaging, and Robotics Technologies for Surgical Vitreoretinal Diseases.
    Poh SSJ; Sia JT; Yip MYT; Tsai ASH; Lee SY; Tan GSW; Weng CY; Kadonosono K; Kim M; Yonekawa Y; Ho AC; Toth CA; Ting DSW
    Ophthalmol Retina; 2024 Jul; 8(7):633-645. PubMed ID: 38280425
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Advantages of robotics in benign gynecologic surgery.
    Truong M; Kim JH; Scheib S; Patzkowsky K
    Curr Opin Obstet Gynecol; 2016 Aug; 28(4):304-10. PubMed ID: 27362711
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Robotics in keyhole transcranial endoscope-assisted microsurgery: a critical review of existing systems and proposed specifications for new robotic platforms.
    Marcus HJ; Seneci CA; Payne CJ; Nandi D; Darzi A; Yang GZ
    Neurosurgery; 2014 Mar; 10 Suppl 1():84-95; discussion 95-6. PubMed ID: 23921708
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Robotic Assistance for Intraocular Microsurgery: Challenges and Perspectives.
    Iordachita II; de Smet MD; Naus G; Mitsuishi M; Riviere CN
    Proc IEEE Inst Electr Electron Eng; 2022 Jul; 110(7):893-908. PubMed ID: 36588782
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cooperative robot assistant for vitreoretinal microsurgery: development of the RVRMS and feasibility studies in an animal model.
    Chen YQ; Tao JW; Su LY; Li L; Zhao SX; Yang Y; Shen LJ
    Graefes Arch Clin Exp Ophthalmol; 2017 Jun; 255(6):1167-1171. PubMed ID: 28389702
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Robotics and ophthalmology: Are we there yet?
    Pandey SK; Sharma V
    Indian J Ophthalmol; 2019 Jul; 67(7):988-994. PubMed ID: 31238393
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Clinical applications of robotic technology in vascular and endovascular surgery.
    Antoniou GA; Riga CV; Mayer EK; Cheshire NJ; Bicknell CD
    J Vasc Surg; 2011 Feb; 53(2):493-9. PubMed ID: 20801611
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Robot-assisted tremor control for performance enhancement of retinal microsurgeons.
    Roizenblatt M; Grupenmacher AT; Belfort Junior R; Maia M; Gehlbach PL
    Br J Ophthalmol; 2019 Aug; 103(8):1195-1200. PubMed ID: 30573495
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A pre-emptive pain management protocol to support self-care following vitreo-retinal day surgery.
    McCloud C; Harrington A; King L
    J Clin Nurs; 2014 Nov; 23(21-22):3230-9. PubMed ID: 24612238
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Current status and future directions of robotic single-site surgery: a systematic review.
    Autorino R; Kaouk JH; Stolzenburg JU; Gill IS; Mottrie A; Tewari A; Cadeddu JA
    Eur Urol; 2013 Feb; 63(2):266-80. PubMed ID: 22940173
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Robot-assisted general surgery.
    Hazey JW; Melvin WS
    Semin Laparosc Surg; 2004 Jun; 11(2):107-12. PubMed ID: 15254649
    [TBL] [Abstract][Full Text] [Related]  

  • 18. State of the art of robotic surgery related to vision: brain and eye applications of newly available devices.
    Nuzzi R; Brusasco L
    Eye Brain; 2018; 10():13-24. PubMed ID: 29440943
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Shared control of a medical robot with haptic guidance.
    Xiong L; Chng CB; Chui CK; Yu P; Li Y
    Int J Comput Assist Radiol Surg; 2017 Jan; 12(1):137-147. PubMed ID: 27314590
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of realistic force feedback in a robotic assisted minimally invasive surgery system.
    Moradi Dalvand M; Shirinzadeh B; Nahavandi S; Smith J
    Minim Invasive Ther Allied Technol; 2014 Jun; 23(3):127-35. PubMed ID: 24328984
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.