BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 35576653)

  • 1. 3D inkjet printed self-propelled motors for micro-stirring.
    Kumar P; Zhang Y; Ebbens SJ; Zhao X
    J Colloid Interface Sci; 2022 Oct; 623():96-108. PubMed ID: 35576653
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reactive Inkjet Printing and Propulsion Analysis of Silk-based Self-propelled Micro-stirrers.
    Gregory DA; Kumar P; Jimenez-Franco A; Zhang Y; Zhang Y; Ebbens SJ; Zhao X
    J Vis Exp; 2019 Apr; (146):. PubMed ID: 31081811
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reactive Inkjet Printing of Functional Silk Stirrers for Enhanced Mixing and Sensing.
    Zhang Y; Gregory DA; Zhang Y; Smith PJ; Ebbens SJ; Zhao X
    Small; 2019 Jan; 15(1):e1804213. PubMed ID: 30515976
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Silk fibroin reactive inks for 3D printing crypt-like structures.
    Heichel DL; Tumbic JA; Boch ME; Ma AWK; Burke KA
    Biomed Mater; 2020 Sep; 15(5):055037. PubMed ID: 32924975
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reactive Inkjet Printing of Biocompatible Enzyme Powered Silk Micro-Rockets.
    Gregory DA; Zhang Y; Smith PJ; Zhao X; Ebbens SJ
    Small; 2016 Aug; 12(30):4048-55. PubMed ID: 27345008
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reactive Inkjet Printing of Regenerated Silk Fibroin Films for Use as Dental Barrier Membranes.
    Rider PM; Brook IM; Smith PJ; Miller CA
    Micromachines (Basel); 2018 Jan; 9(2):. PubMed ID: 30393322
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D Printing of Monolithic Proteinaceous Cantilevers Using Regenerated Silk Fibroin.
    Mu X; Gonzalez-Obeso C; Xia Z; Sahoo JK; Li G; Cebe P; Zhang YS; Kaplan DL
    Molecules; 2022 Mar; 27(7):. PubMed ID: 35408547
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biocompatible fluorescent silk fibroin bioink for digital light processing 3D printing.
    Lee YJ; Lee JS; Ajiteru O; Lee OJ; Lee JS; Lee H; Kim SW; Park JW; Kim KY; Choi KY; Hong H; Sultan T; Kim SH; Park CH
    Int J Biol Macromol; 2022 Jul; 213():317-327. PubMed ID: 35605719
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Silk Fibroin Bioinks for Digital Light Processing (DLP) 3D Bioprinting.
    Kim SH; Kim DY; Lim TH; Park CH
    Adv Exp Med Biol; 2020; 1249():53-66. PubMed ID: 32602090
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D freeform printing of silk fibroin.
    Rodriguez MJ; Dixon TA; Cohen E; Huang W; Omenetto FG; Kaplan DL
    Acta Biomater; 2018 Apr; 71():379-387. PubMed ID: 29550442
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimizing interactions between soluble silk fibroin and capryl glucoside for design of a natural and high-performance co-surfactant system.
    Maxwell R; Costache MC; Giarrosso A; Bosques C; Amin S
    Int J Cosmet Sci; 2021 Feb; 43(1):68-77. PubMed ID: 33259636
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fast Setting Silk Fibroin Bioink for Bioprinting of Patient-Specific Memory-Shape Implants.
    Costa JB; Silva-Correia J; Oliveira JM; Reis RL
    Adv Healthc Mater; 2017 Nov; 6(22):. PubMed ID: 29106065
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3D printing with silk: considerations and applications.
    DeBari MK; Keyser MN; Bai MA; Abbott RD
    Connect Tissue Res; 2020 Mar; 61(2):163-173. PubMed ID: 30558445
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inkjet printing of silk nest arrays for cell hosting.
    Suntivich R; Drachuk I; Calabrese R; Kaplan DL; Tsukruk VV
    Biomacromolecules; 2014 Apr; 15(4):1428-35. PubMed ID: 24605757
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication of hierarchically porous silk fibroin-bioactive glass composite scaffold via indirect 3D printing: Effect of particle size on physico-mechanical properties and in vitro cellular behavior.
    Bidgoli MR; Alemzadeh I; Tamjid E; Khafaji M; Vossoughi M
    Mater Sci Eng C Mater Biol Appl; 2019 Oct; 103():109688. PubMed ID: 31349405
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D culture of fibroblasts and neuronal cells on microfabricated free-floating carriers.
    Kumar P; Jimenez Franco A; Zhao X
    Colloids Surf B Biointerfaces; 2023 Jul; 227():113350. PubMed ID: 37209598
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cell guidance on peptide micropatterned silk fibroin scaffolds.
    Sun W; Taylor CS; Zhang Y; Gregory DA; Tomeh MA; Haycock JW; Smith PJ; Wang F; Xia Q; Zhao X
    J Colloid Interface Sci; 2021 Dec; 603():380-390. PubMed ID: 34186409
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Designing Micro- and Nanoswimmers for Specific Applications.
    Katuri J; Ma X; Stanton MM; Sánchez S
    Acc Chem Res; 2017 Jan; 50(1):2-11. PubMed ID: 27809479
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct Femtosecond Laser Printing of Silk Fibroin Microstructures.
    Santos MV; Paula KT; de Andrade MB; Gomes EM; Marques LF; Ribeiro SJL; Mendonça CR
    ACS Appl Mater Interfaces; 2020 Nov; 12(44):50033-50038. PubMed ID: 33090755
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Constructing Silk Fibroin-Based Three-Dimensional Microfluidic Devices
    Zhou M; Shi X; Li X; Xiao G; Liang L; Ju J; Wang F; Xia Q; Sun W; Qiao Y; Yu L; Lu Z
    ACS Appl Bio Mater; 2021 Nov; 4(11):8039-8048. PubMed ID: 35006785
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.