These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 35576807)

  • 21. A fluorometric method for aptamer-based simultaneous determination of two kinds of the fusarium mycotoxins zearalenone and fumonisin B
    He D; Wu Z; Cui B; Jin Z; Xu E
    Mikrochim Acta; 2020 Apr; 187(4):254. PubMed ID: 32239300
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Upconversion nanoparticles/carbon dots (UCNPs@CDs) composite for simultaneous detection and speciation of divalent and trivalent iron ions.
    Sun YL; Zhang XP; Zhao CX; Liu X; Shu Y; Wang JH; Liu N
    Anal Chim Acta; 2021 Oct; 1183():338973. PubMed ID: 34627508
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A highly selective colorimetric and ratiometric fluorescent probe for instantaneous sensing of Hg2+ in water, soil and seafood and its application on test strips.
    Lan L; Niu Q; Li T
    Anal Chim Acta; 2018 Sep; 1023():105-114. PubMed ID: 29754600
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ratiometric fluorescent nanoprobes based on Resonance Rayleigh Scattering and inner filter effect for detecting alizarin red and Pb
    Yan F; Sun Z; Ma T; Sun X; Xu J; Wang R; Chen L
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Mar; 228():117843. PubMed ID: 31813723
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Gold nanoparticle aptamer assay for the determination of histamine in foodstuffs.
    Lerga TM; Skouridou V; Bermudo MC; Bashammakh AS; El-Shahawi MS; Alyoubi AO; O'Sullivan CK
    Mikrochim Acta; 2020 Jul; 187(8):452. PubMed ID: 32676707
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An inner-filter-effect based ratiometric fluorescent sensor for the detection of uranyl ions in real samples.
    Nan HR; Liu YH; Gong WJ; Peng HB; Wang YQ; Zhang ZB; Cao XH
    Anal Methods; 2022 Feb; 14(5):532-540. PubMed ID: 35043798
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An "off-on" colorimetric and fluorometric assay for Cu(II) based on the use of NaYF
    Shao H; Xu D; Ding Y; Hong X; Liu Y
    Mikrochim Acta; 2018 Mar; 185(4):211. PubMed ID: 29594634
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fully automated process for histamine detection based on magnetic separation and fluorescence detection.
    Gagic M; Nejdl L; Xhaxhiu K; Cernei N; Zitka O; Jamroz E; Svec P; Richtera L; Kopel P; Milosavljevic V; Adam V
    Talanta; 2020 May; 212():120789. PubMed ID: 32113552
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ratiometric fluorescence monitoring of α-glucosidase activity based on oxidase-like property of MnO
    Shi M; Cen Y; Xu G; Wei F; Xu X; Cheng X; Chai Y; Sohail M; Hu Q
    Anal Chim Acta; 2019 Oct; 1077():225-231. PubMed ID: 31307713
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sensitive ratiometric fluorescence assay for detecting xanthine in serum based on the inner filter effect of enzyme-catalyzed oxidation products to silicon nanoparticles.
    Li D; Chen F; Li N; Ye X; Sun Y; Ma P; Song D; Wang X
    Anal Bioanal Chem; 2021 Feb; 413(5):1405-1415. PubMed ID: 33388845
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A ratiometric fluorescence probe based on graphene quantum dots and o-phenylenediamine for highly sensitive detection of acetylcholinesterase activity.
    Ye M; Lin B; Yu Y; Li H; Wang Y; Zhang L; Cao Y; Guo M
    Mikrochim Acta; 2020 Aug; 187(9):511. PubMed ID: 32833082
    [TBL] [Abstract][Full Text] [Related]  

  • 32. 808 nm-light-excited upconversion nanoprobe based on LRET for the ratiometric detection of nitric oxide in living cancer cells.
    Wang H; Liu Y; Wang Z; Yang M; Gu Y
    Nanoscale; 2018 Jun; 10(22):10641-10649. PubMed ID: 29845132
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fluorescence-SERS dual-mode for sensing histamine on specific binding histamine-derivative and gold nanoparticles.
    Li K; Li H; Yin M; Yang D; Xiao F; Kumar Tammina S; Yang Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 May; 273():121047. PubMed ID: 35217264
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fluorescent and colorimetric determination of glutathione based on the inner filter effect between silica nanoparticle-gold nanocluster nanocomposites and oxidized 3,3',5,5'-tetramethylbenzidine.
    Zhang G; Xiang M; Kong RM; Qu F
    Analyst; 2020 Sep; 145(19):6254-6261. PubMed ID: 32985630
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Designing stimuli-responsive upconversion nanoparticles based on an inner filter effect mimetic immunoassay for phenylketonuria accuracy diagnosis.
    Hu Y; Wang Y; Wang R; Zhang W; Hua R
    Colloids Surf B Biointerfaces; 2022 Sep; 217():112642. PubMed ID: 35728371
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A highly sensitive dual-read assay using nitrogen-doped carbon dots for the quantitation of uric acid in human serum and urine samples.
    Li F; Rui J; Yan Z; Qiu P; Tang X
    Mikrochim Acta; 2021 Aug; 188(9):311. PubMed ID: 34455515
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Highly Bright Self-Assembled Copper Nanoclusters: A Novel Photoluminescent Probe for Sensitive Detection of Histamine.
    Han A; Xiong L; Hao S; Yang Y; Li X; Fang G; Liu J; Pei Y; Wang S
    Anal Chem; 2018 Aug; 90(15):9060-9067. PubMed ID: 29973046
    [TBL] [Abstract][Full Text] [Related]  

  • 38. FRET-Based Upconversion Nanoprobe Sensitized by Nd
    Wang H; Li Y; Yang M; Wang P; Gu Y
    ACS Appl Mater Interfaces; 2019 Feb; 11(7):7441-7449. PubMed ID: 30673225
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ultrafast Ratiometric Detection of Aflatoxin B1 Based on Fluorescent β-CD@Cu Nanoparticles and Pt
    Li M; Qian ZJ; Peng CF; Wei XL; Wang ZP
    ACS Appl Bio Mater; 2022 Jan; 5(1):285-294. PubMed ID: 35014825
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Determination of putrescine and cadaverine in seafood (finfish and shellfish) by liquid chromatography using pyrene excimer fluorescence.
    Marks Rupp HS; Anderson CR
    J Chromatogr A; 2005 Nov; 1094(1-2):60-9. PubMed ID: 16257290
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.