These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 35576825)

  • 1. AMPpred-EL: An effective antimicrobial peptide prediction model based on ensemble learning.
    Lv H; Yan K; Guo Y; Zou Q; Hesham AE; Liu B
    Comput Biol Med; 2022 Jul; 146():105577. PubMed ID: 35576825
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ensemble-AMPPred: Robust AMP Prediction and Recognition Using the Ensemble Learning Method with a New Hybrid Feature for Differentiating AMPs.
    Lertampaiporn S; Vorapreeda T; Hongsthong A; Thammarongtham C
    Genes (Basel); 2021 Jan; 12(2):. PubMed ID: 33494403
    [TBL] [Abstract][Full Text] [Related]  

  • 3. AMPpred-MFA: An Interpretable Antimicrobial Peptide Predictor with a Stacking Architecture, Multiple Features, and Multihead Attention.
    Li C; Zou Q; Jia C; Zheng J
    J Chem Inf Model; 2024 Apr; 64(7):2393-2404. PubMed ID: 37799091
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Co-AMPpred for in silico-aided predictions of antimicrobial peptides by integrating composition-based features.
    Singh O; Hsu WL; Su EC
    BMC Bioinformatics; 2021 Jul; 22(1):389. PubMed ID: 34330209
    [TBL] [Abstract][Full Text] [Related]  

  • 5. AMP-BERT: Prediction of antimicrobial peptide function based on a BERT model.
    Lee H; Lee S; Lee I; Nam H
    Protein Sci; 2023 Jan; 32(1):e4529. PubMed ID: 36461699
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PeNGaRoo, a combined gradient boosting and ensemble learning framework for predicting non-classical secreted proteins.
    Zhang Y; Yu S; Xie R; Li J; Leier A; Marquez-Lago TT; Akutsu T; Smith AI; Ge Z; Wang J; Lithgow T; Song J
    Bioinformatics; 2020 Feb; 36(3):704-712. PubMed ID: 31393553
    [TBL] [Abstract][Full Text] [Related]  

  • 7. iAMPCN: a deep-learning approach for identifying antimicrobial peptides and their functional activities.
    Xu J; Li F; Li C; Guo X; Landersdorfer C; Shen HH; Peleg AY; Li J; Imoto S; Yao J; Akutsu T; Song J
    Brief Bioinform; 2023 Jul; 24(4):. PubMed ID: 37369638
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel antibacterial peptide recognition algorithm based on BERT.
    Zhang Y; Lin J; Zhao L; Zeng X; Liu X
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34037687
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SAMP: Identifying Antimicrobial Peptides by an Ensemble Learning Model Based on Proportionalized Split Amino Acid Composition.
    Feng J; Sun M; Liu C; Zhang W; Xu C; Wang J; Wang G; Wan S
    bioRxiv; 2024 Apr; ():. PubMed ID: 38712184
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Large-scale comparative review and assessment of computational methods for anti-cancer peptide identification.
    Liang X; Li F; Chen J; Li J; Wu H; Li S; Song J; Liu Q
    Brief Bioinform; 2021 Jul; 22(4):. PubMed ID: 33316035
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An efficient hybrid deep learning architecture for predicting short antimicrobial peptides.
    Nguyen QH; Nguyen-Vo TH; Do TTT; Nguyen BP
    Proteomics; 2024 Jul; 24(14):e2300382. PubMed ID: 38837544
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Machine Learning Prediction of Antimicrobial Peptides.
    Wang G; Vaisman II; van Hoek ML
    Methods Mol Biol; 2022; 2405():1-37. PubMed ID: 35298806
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CS-AMPPred: an updated SVM model for antimicrobial activity prediction in cysteine-stabilized peptides.
    Porto WF; Pires ÁS; Franco OL
    PLoS One; 2012; 7(12):e51444. PubMed ID: 23240023
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ncRNALocate-EL: a multi-label ncRNA subcellular locality prediction model based on ensemble learning.
    Bai T; Liu B
    Brief Funct Genomics; 2023 Nov; 22(5):442-452. PubMed ID: 37122147
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ensemble Machine Learning and Predicted Properties Promote Antimicrobial Peptide Identification.
    Zhong G; Liu H; Deng L
    Interdiscip Sci; 2024 Dec; 16(4):951-965. PubMed ID: 38972032
    [TBL] [Abstract][Full Text] [Related]  

  • 16. EnAMP: A novel deep learning ensemble antibacterial peptide recognition algorithm based on multi-features.
    Zhuang J; Gao W; Su R
    J Bioinform Comput Biol; 2024 Feb; 22(1):2450001. PubMed ID: 38406833
    [TBL] [Abstract][Full Text] [Related]  

  • 17. AMPFinder: A computational model to identify antimicrobial peptides and their functions based on sequence-derived information.
    Yang S; Yang Z; Ni X
    Anal Biochem; 2023 Jul; 673():115196. PubMed ID: 37236434
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PIP-EL: A New Ensemble Learning Method for Improved Proinflammatory Peptide Predictions.
    Manavalan B; Shin TH; Kim MO; Lee G
    Front Immunol; 2018; 9():1783. PubMed ID: 30108593
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fuse feeds as one: cross-modal framework for general identification of AMPs.
    Zhang W; Xu Y; Wang A; Chen G; Zhao J
    Brief Bioinform; 2023 Sep; 24(6):. PubMed ID: 37779248
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicting antimicrobial peptides with improved accuracy by incorporating the compositional, physico-chemical and structural features into Chou's general PseAAC.
    Meher PK; Sahu TK; Saini V; Rao AR
    Sci Rep; 2017 Feb; 7():42362. PubMed ID: 28205576
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.