These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 35576840)

  • 1. Optoplasmonic MOFs film for SERS detection.
    Zhang X; Xie X; Zhang L; Yao K; Huang Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Oct; 278():121362. PubMed ID: 35576840
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sandwich optoplasmonic hybrid structure for surface enhanced Raman spectroscopy.
    Hou S; Wang J; Wang C; Yuan Y; Zhang X; Huang Y; Yan S
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Jan; 264():120252. PubMed ID: 34411768
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasmon-driven catalytic reactions in optoplasmonic sandwich hybrid structure.
    Zhang X; Xie X; Zhang L; Chen Z; Huang Y
    Appl Opt; 2023 Jan; 62(2):506-510. PubMed ID: 36630253
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microfluidic Transport of Hybrid Optoplasmonic Particles for Repeatable SERS Detection.
    Liu D; Liu C; Yuan Y; Zhang X; Huang Y; Yan S
    Anal Chem; 2021 Aug; 93(30):10672-10678. PubMed ID: 34308643
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optoplasmonic film for SERS.
    Ju L; Shi J; Liu C; Huang Y; Sun X
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Jul; 255():119698. PubMed ID: 33773433
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optoplasmonic Hybrid Materials for Trace Detection of Methamphetamine in Biological Fluids through SERS.
    Hong Y; Zhou X; Xu B; Huang Y; He W; Wang S; Wang C; Zhou G; Chen Y; Gong T
    ACS Appl Mater Interfaces; 2020 May; 12(21):24192-24200. PubMed ID: 32351116
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of an Optoplasmonic Raft with Improved SERS Performance Detecting Methamphetamine through Bubble Enrichment.
    Hong Y; Zhu L; Zhang B; Wang Z; Zhang Y; Xu B; Yang R; Wang H; Wang C; Zhou G; Chen Y; Li J; He W
    ACS Appl Mater Interfaces; 2024 Jan; 16(4):5245-5254. PubMed ID: 38239067
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SiO
    Sha H; Wang Z; Zhang J
    Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746375
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Facile Regulation of Shell Thickness of the Au@MOF Core-Shell Composites for Highly Sensitive Surface-Enhanced Raman Scattering Sensing.
    Li B; Liu Y; Cheng J
    Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146388
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of optoplasmonic particles through electroless deposition and the application in SERS-based screening of nodule-involved lung cancer.
    Wang Z; Hong Y; Yan H; Luo H; Zhang Y; Li L; Lu S; Chen Y; Wang D; Su Y; Yin G
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Oct; 279():121483. PubMed ID: 35700612
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hotspots engineering by grafting Au@Ag core-shell nanoparticles on the Au film over slightly etched nanoparticles substrate for on-site paraquat sensing.
    Wang C; Wu X; Dong P; Chen J; Xiao R
    Biosens Bioelectron; 2016 Dec; 86():944-950. PubMed ID: 27498319
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photonic-plasmonic mode coupling in on-chip integrated optoplasmonic molecules.
    Ahn W; Boriskina SV; Hong Y; Reinhard BM
    ACS Nano; 2012 Jan; 6(1):951-60. PubMed ID: 22148502
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Layered filter paper-silver nanoparticle-ZIF-8 composite for efficient multi-mode enrichment and sensitive SERS detection of thiram.
    Xu F; Shang W; Xuan M; Ma G; Ben Z
    Chemosphere; 2022 Feb; 288(Pt 3):132635. PubMed ID: 34687679
    [TBL] [Abstract][Full Text] [Related]  

  • 14. FDTD Analysis of Hotspot-Enabling Hybrid Nanohole-Nanoparticle Structures for SERS Detection.
    Gomez-Cruz J; Bdour Y; Stamplecoskie K; Escobedo C
    Biosensors (Basel); 2022 Feb; 12(2):. PubMed ID: 35200388
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Composite substrate of graphene/Ag nanoparticles coupled with a multilayer film for surface-enhanced Raman scattering biosensing.
    Yue W; Liu C; Zha Z; Liu R; Gao J; Shafi M; Feng J; Jiang S
    Opt Express; 2022 Apr; 30(8):13226-13237. PubMed ID: 35472940
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasmon-Driven Interfacial Catalytic Reactions in Plasmonic MOF Nanoparticles.
    Xie X; Zhang Y; Zhang L; Zheng J; Huang Y; Fa H
    Anal Chem; 2021 Oct; 93(39):13219-13225. PubMed ID: 34546701
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Porous Silicon Covered with Silver Nanoparticles as Surface-Enhanced Raman Scattering (SERS) Substrate for Ultra-Low Concentration Detection.
    Kosović M; Balarin M; Ivanda M; Đerek V; Marciuš M; Ristić M; Gamulin O
    Appl Spectrosc; 2015 Dec; 69(12):1417-24. PubMed ID: 26556231
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metal-Organic Framework-Enabled Trapping of Volatile Organic Compounds into Plasmonic Nanogaps for Surface-Enhanced Raman Scattering Detection.
    Liu Y; Chui KK; Fang Y; Wen S; Zhuo X; Wang J
    ACS Nano; 2024 Apr; 18(17):11234-11244. PubMed ID: 38630523
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep Learning Enabled SERS Identification of Gaseous Molecules on Flexible Plasmonic MOF Nanowire Films.
    Li M; He X; Wu C; Wang L; Zhang X; Gong X; Zeng X; Huang Y
    ACS Sens; 2024 Feb; 9(2):979-987. PubMed ID: 38299870
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surpassingly competitive electromagnetic field enhancement at the silica/silver interface for selective intracellular surface enhanced Raman scattering detection.
    Radziuk D; Möhwald H
    ACS Nano; 2015 Mar; 9(3):2820-35. PubMed ID: 25704061
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.