These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
425 related articles for article (PubMed ID: 35577086)
1. Climate change simulation and trend analysis of extreme precipitation and floods in the mesoscale Rur catchment in western Germany until 2099 using Statistical Downscaling Model (SDSM) and the Soil & Water Assessment Tool (SWAT model). Eingrüber N; Korres W Sci Total Environ; 2022 Sep; 838(Pt 1):155775. PubMed ID: 35577086 [TBL] [Abstract][Full Text] [Related]
2. Projection of Future Extreme Precipitation and Flood Changes of the Jinsha River Basin in China Based on CMIP5 Climate Models. Yuan Z; Xu J; Wang Y Int J Environ Res Public Health; 2018 Nov; 15(11):. PubMed ID: 30413030 [TBL] [Abstract][Full Text] [Related]
3. Impact assessment of projected climate change on diffuse phosphorous loss in Xin'anjiang catchment, China. Zhai X; Zhang Y Environ Sci Pollut Res Int; 2018 Feb; 25(5):4570-4583. PubMed ID: 29190035 [TBL] [Abstract][Full Text] [Related]
4. Climate change effects on extreme flows of water supply area in Istanbul: utility of regional climate models and downscaling method. Kara F; Yucel I Environ Monit Assess; 2015 Sep; 187(9):580. PubMed ID: 26293893 [TBL] [Abstract][Full Text] [Related]
5. Hydrological Responses to Land-Use Change Scenarios under Constant and Changed Climatic Conditions. Zhang L; Nan Z; Yu W; Ge Y Environ Manage; 2016 Feb; 57(2):412-31. PubMed ID: 26429363 [TBL] [Abstract][Full Text] [Related]
6. The significance of shifts in precipitation patterns: modelling the impacts of climate change and glacier retreat on extreme flood events in Denali National Park, Alaska. Crossman J; Futter MN; Whitehead PG PLoS One; 2013; 8(9):e74054. PubMed ID: 24023925 [TBL] [Abstract][Full Text] [Related]
7. Assessment of climate change impacts on water balance and hydrological extremes in Bang Pakong-Prachin Buri river basin, Thailand. Okwala T; Shrestha S; Ghimire S; Mohanasundaram S; Datta A Environ Res; 2020 Jul; 186():109544. PubMed ID: 32361258 [TBL] [Abstract][Full Text] [Related]
8. Hydrological response to climate change for Gilgel Abay River, in the Lake Tana Basin -Upper Blue Nile Basin of Ethiopia. Dile YT; Berndtsson R; Setegn SG PLoS One; 2013; 8(10):e79296. PubMed ID: 24250755 [TBL] [Abstract][Full Text] [Related]
9. Climate change-induced variations in future extreme precipitation intensity-duration-frequency in flood-prone city of Adama, central Ethiopia. Bulti DT; Abebe BG; Biru Z Environ Monit Assess; 2021 Nov; 193(12):784. PubMed ID: 34755254 [TBL] [Abstract][Full Text] [Related]
10. Assessment of future variability in extreme precipitation and the potential effects on the wadi flow regime. Gunawardhana LN; Al-Rawas GA; Kazama S; Al-Najar KA Environ Monit Assess; 2015 Oct; 187(10):626. PubMed ID: 26370197 [TBL] [Abstract][Full Text] [Related]
11. Hydrological modelling of a snow/glacier-fed western Himalayan basin to simulate the current and future streamflows under changing climate scenarios. Shukla S; Jain SK; Kansal ML Sci Total Environ; 2021 Nov; 795():148871. PubMed ID: 34378536 [TBL] [Abstract][Full Text] [Related]
12. Streamflow trends and flood frequency analysis: a regional study of the UK. Di Nunno F; de Marinis G; Granata F Environ Sci Pollut Res Int; 2024 Sep; 31(42):54659-54683. PubMed ID: 39212820 [TBL] [Abstract][Full Text] [Related]
13. Response of non-point source pollutant loads to climate change in the Shitoukoumen reservoir catchment. Zhang L; Lu W; An Y; Li D; Gong L Environ Monit Assess; 2012 Jan; 184(1):581-94. PubMed ID: 21931944 [TBL] [Abstract][Full Text] [Related]
14. Response of future hydropower generation of cascade reservoirs to climate change in alpine regions. Yan B; Xu Y; Liu H; Huang C PLoS One; 2022; 17(8):e0269389. PubMed ID: 35984820 [TBL] [Abstract][Full Text] [Related]
15. Modeling the future impacts of climate change on water availability in the Karnali River Basin of Nepal Himalaya. Dahal P; Shrestha ML; Panthi J; Pradhananga D Environ Res; 2020 Jun; 185():109430. PubMed ID: 32247907 [TBL] [Abstract][Full Text] [Related]
16. Climate change impact on fluvial flooding in the Indian sub-basin: A case study on the Adyar sub-basin. Ramachandran A; Palanivelu K; Mudgal BV; Jeganathan A; Guganesh S; Abinaya B; Elangovan A PLoS One; 2019; 14(5):e0216461. PubMed ID: 31086383 [TBL] [Abstract][Full Text] [Related]
17. [Impact of changes in land use and climate on the runoff in Liuxihe Watershed based on SWAT model]. Yuan YZ; Zhang ZD; Meng JH Ying Yong Sheng Tai Xue Bao; 2015 Apr; 26(4):989-98. PubMed ID: 26259438 [TBL] [Abstract][Full Text] [Related]
18. Coupling SWAT and Bi-LSTM for improving daily-scale hydro-climatic simulation and climate change impact assessment in a tropical river basin. Yang S; Tan ML; Song Q; He J; Yao N; Li X; Yang X J Environ Manage; 2023 Mar; 330():117244. PubMed ID: 36621311 [TBL] [Abstract][Full Text] [Related]
19. Stochastic sensitivity analysis of nitrogen pollution to climate change in a river basin with complex pollution sources. Yang X; Tan L; He R; Fu G; Ye J; Liu Q; Wang G Environ Sci Pollut Res Int; 2017 Dec; 24(34):26545-26561. PubMed ID: 28952024 [TBL] [Abstract][Full Text] [Related]
20. A downscaling-disaggregation approach for developing IDF curves in arid regions. Uraba MB; Gunawardhana LN; Al-Rawas GA; Baawain MS Environ Monit Assess; 2019 Mar; 191(4):245. PubMed ID: 30915584 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]