BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 35577099)

  • 1. Decrypting the mechanistic basis of CRISPR/Cas9 protein.
    Panda G; Ray A
    Prog Biophys Mol Biol; 2022 Aug; 172():60-76. PubMed ID: 35577099
    [TBL] [Abstract][Full Text] [Related]  

  • 2. sgRNA Sequence Motifs Blocking Efficient CRISPR/Cas9-Mediated Gene Editing.
    Graf R; Li X; Chu VT; Rajewsky K
    Cell Rep; 2019 Jan; 26(5):1098-1103.e3. PubMed ID: 30699341
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The initiation, propagation and dynamics of CRISPR-SpyCas9 R-loop complex.
    Zeng Y; Cui Y; Zhang Y; Zhang Y; Liang M; Chen H; Lan J; Song G; Lou J
    Nucleic Acids Res; 2018 Jan; 46(1):350-361. PubMed ID: 29145633
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single molecule methods for studying CRISPR Cas9-induced DNA unwinding.
    Okafor IC; Choi J; Ha T
    Methods; 2022 Aug; 204():319-326. PubMed ID: 34767923
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular basis for the PAM expansion and fidelity enhancement of an evolved Cas9 nuclease.
    Chen W; Zhang H; Zhang Y; Wang Y; Gan J; Ji Q
    PLoS Biol; 2019 Oct; 17(10):e3000496. PubMed ID: 31603896
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Points of View on the Tools for Genome/Gene Editing.
    Chuang CK; Lin WM
    Int J Mol Sci; 2021 Sep; 22(18):. PubMed ID: 34576035
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bridge Helix of Cas9 Modulates Target DNA Cleavage and Mismatch Tolerance.
    Babu K; Amrani N; Jiang W; Yogesha SD; Nguyen R; Qin PZ; Rajan R
    Biochemistry; 2019 Apr; 58(14):1905-1917. PubMed ID: 30916546
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phage AcrIIA2 DNA Mimicry: Structural Basis of the CRISPR and Anti-CRISPR Arms Race.
    Liu L; Yin M; Wang M; Wang Y
    Mol Cell; 2019 Feb; 73(3):611-620.e3. PubMed ID: 30606466
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Probing the structural dynamics of the CRISPR-Cas9 RNA-guided DNA-cleavage system by coarse-grained modeling.
    Zheng W
    Proteins; 2017 Feb; 85(2):342-353. PubMed ID: 27936513
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Minimal 2'-O-methyl phosphorothioate linkage modification pattern of synthetic guide RNAs for increased stability and efficient CRISPR-Cas9 gene editing avoiding cellular toxicity.
    Basila M; Kelley ML; Smith AVB
    PLoS One; 2017; 12(11):e0188593. PubMed ID: 29176845
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulating CRISPR/Cas9 Function through Conditional Guide RNA Control.
    Brown W; Zhou W; Deiters A
    Chembiochem; 2021 Jan; 22(1):63-72. PubMed ID: 32833316
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction and Validation of Native and Engineered Cas9 Guide Sequences.
    Briner AE; Henriksen ED; Barrangou R
    Cold Spring Harb Protoc; 2016 Jul; 2016(7):. PubMed ID: 27371591
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA.
    Fonfara I; Richter H; Bratovič M; Le Rhun A; Charpentier E
    Nature; 2016 Apr; 532(7600):517-21. PubMed ID: 27096362
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A pipeline for characterization of novel Cas9 orthologs.
    Karvelis T; Young JK; Siksnys V
    Methods Enzymol; 2019; 616():219-240. PubMed ID: 30691644
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Compact, High-Accuracy Cas9 with a Dinucleotide PAM for In Vivo Genome Editing.
    Edraki A; Mir A; Ibraheim R; Gainetdinov I; Yoon Y; Song CQ; Cao Y; Gallant J; Xue W; Rivera-Pérez JA; Sontheimer EJ
    Mol Cell; 2019 Feb; 73(4):714-726.e4. PubMed ID: 30581144
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Controlling CRISPR-Cas9 with ligand-activated and ligand-deactivated sgRNAs.
    Kundert K; Lucas JE; Watters KE; Fellmann C; Ng AH; Heineike BM; Fitzsimmons CM; Oakes BL; Qu J; Prasad N; Rosenberg OS; Savage DF; El-Samad H; Doudna JA; Kortemme T
    Nat Commun; 2019 May; 10(1):2127. PubMed ID: 31073154
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conformational control of Cas9 by CRISPR hybrid RNA-DNA guides mitigates off-target activity in T cells.
    Donohoue PD; Pacesa M; Lau E; Vidal B; Irby MJ; Nyer DB; Rotstein T; Banh L; Toh MS; Gibson J; Kohrs B; Baek K; Owen ALG; Slorach EM; van Overbeek M; Fuller CK; May AP; Jinek M; Cameron P
    Mol Cell; 2021 Sep; 81(17):3637-3649.e5. PubMed ID: 34478654
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cutting back malaria: CRISPR/Cas9 genome editing of Plasmodium.
    Lee MCS; Lindner SE; Lopez-Rubio JJ; Llinás M
    Brief Funct Genomics; 2019 Sep; 18(5):281-289. PubMed ID: 31365053
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electronic Circular Dichroism of the Cas9 Protein and gRNA:Cas9 Ribonucleoprotein Complex.
    Halat M; Klimek-Chodacka M; Orleanska J; Baranska M; Baranski R
    Int J Mol Sci; 2021 Mar; 22(6):. PubMed ID: 33805827
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CRISPR GUARD protects off-target sites from Cas9 nuclease activity using short guide RNAs.
    Coelho MA; De Braekeleer E; Firth M; Bista M; Lukasiak S; Cuomo ME; Taylor BJM
    Nat Commun; 2020 Aug; 11(1):4132. PubMed ID: 32807781
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.