BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 35577192)

  • 21. Drawing dependent structures, mechanical properties and cyclization behaviors of polyacrylonitrile and polyacrylonitrile/carbon nanotube composite fibers prepared by plasticized spinning.
    Li X; Qin A; Zhao X; Liu D; Wang H; He C
    Phys Chem Chem Phys; 2015 Sep; 17(34):21856-65. PubMed ID: 26235219
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of Different Pressures of Supercritical Carbon Dioxide on the Microstructure of PAN Fibers during the Hot-Drawing Process.
    Qiao M; Kong H; Ding X; Hu Z; Zhang L; Cao Y; Yu M
    Polymers (Basel); 2019 Mar; 11(3):. PubMed ID: 30960387
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Microstructure and Mechanical Properties of Polyacrylonitrile Precursor Fiber with Dry and Wet Drawing Process.
    Ahn H; Wee JH; Kim YM; Yu WR; Yeo SY
    Polymers (Basel); 2021 May; 13(10):. PubMed ID: 34067591
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Rheological Behavior of Amino-Functionalized Multi-Walled Carbon Nanotube/Polyacrylonitrile Concentrated Solutions and Crystal Structure of Composite Fibers.
    Zhang H; Quan L; Shi F; Li C; Liu H; Xu L
    Polymers (Basel); 2018 Feb; 10(2):. PubMed ID: 30966222
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The Preparation and Characterization of Polyacrylonitrile-Polyaniline (PAN/PANI) Fibers.
    Karbownik I; Rac-Rumijowska O; Fiedot-Toboła M; Rybicki T; Teterycz H
    Materials (Basel); 2019 Feb; 12(4):. PubMed ID: 30813349
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The Impact of Shear and Elongational Forces on Structural Formation of Polyacrylonitrile/Carbon Nanotubes Composite Fibers during Wet Spinning Process.
    Mirbaha H; Nourpanah P; Scardi P; D'incau M; Greco G; Valentini L; Bittolo Bon S; Arbab S; Pugno N
    Materials (Basel); 2019 Aug; 12(17):. PubMed ID: 31480253
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Process Optimization for Manufacturing PAN-Based Conductive Yarn with Carbon Nanomaterials through Wet Spinning.
    Kim H; Moon H; Lim D; Jeong W
    Polymers (Basel); 2021 Oct; 13(20):. PubMed ID: 34685301
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Preparation and Characterization of Alginate Hydrogel Fibers Reinforced by Cotton for Biomedical Applications.
    Azam F; Ahmad F; Ahmad S; Zafar MS; Ulker Z
    Polymers (Basel); 2022 Nov; 14(21):. PubMed ID: 36365700
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Chitosan/starch fibers and their properties for drug controlled release.
    Wang Q; Zhang N; Hu X; Yang J; Du Y
    Eur J Pharm Biopharm; 2007 Jun; 66(3):398-404. PubMed ID: 17196808
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Humidity-Responsive Guar Gum Fibers by Wet Spinning.
    Sun J; Guo J; Qian Y; Guan F; Zhang Y; He J; Feng S
    Langmuir; 2022 Dec; 38(49):15327-15339. PubMed ID: 36441520
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Pure keratin membrane and fibers from chicken feather.
    Ma B; Qiao X; Hou X; Yang Y
    Int J Biol Macromol; 2016 Aug; 89():614-21. PubMed ID: 27180293
    [TBL] [Abstract][Full Text] [Related]  

  • 32. High tenacity regenerated chitosan fibers prepared by using the binary ionic liquid solvent (Gly·HCl)-[Bmim]Cl.
    Ma B; Qin A; Li X; He C
    Carbohydr Polym; 2013 Sep; 97(2):300-5. PubMed ID: 23911449
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Properties of cellulose/Antarctic krill protein composite fibers prepared in different coagulation baths.
    Song J; Guo J; Zhang S; Gong Y
    Int J Biol Macromol; 2018 Jul; 114():334-340. PubMed ID: 29578013
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Development of corn starch based green composites reinforced with Saccharum spontaneum L fiber and graft copolymers--evaluation of thermal, physico-chemical and mechanical properties.
    Kaith BS; Jindal R; Jana AK; Maiti M
    Bioresour Technol; 2010 Sep; 101(17):6843-51. PubMed ID: 20395134
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Synthesis and characterization of a nano fluorescent starch.
    Li H; Zhang B; Lü S; Ma H; Liu M
    Int J Biol Macromol; 2018 Dec; 120(Pt A):1225-1231. PubMed ID: 30170052
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dry-Jet Wet Spinning of Thermally Stable Lignin-Textile Grade Polyacrylonitrile Fibers Regenerated from Chloride-Based Ionic Liquids Compounds.
    Al Aiti M; Das A; Kanerva M; Järventausta M; Johansson P; Scheffler C; Göbel M; Jehnichen D; Brünig H; Wulff L; Boye S; Arnhold K; Kuusipalo J; Heinrich G
    Materials (Basel); 2020 Aug; 13(17):. PubMed ID: 32825486
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Thermal Analysis and Crystal Structure of Poly(Acrylonitrile-Co-Itaconic Acid) Copolymers Synthesized in Water.
    Zhang H; Quan L; Gao A; Tong Y; Shi F; Xu L
    Polymers (Basel); 2020 Jan; 12(1):. PubMed ID: 31963164
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of sodium salt types on the intermolecular interaction of sodium alginate/antarctic krill protein composite fibers.
    Zhang R; Guo J; Liu Y; Chen S; Zhang S; Yu Y
    Carbohydr Polym; 2018 Jun; 189():72-78. PubMed ID: 29580428
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evaluation of the structural morphology of starch-graft-poly(acrylic acid) on its scale-inhibition efficiency.
    Yu W; Wang Y; Li A; Yang H
    Water Res; 2018 Sep; 141():86-95. PubMed ID: 29778068
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Solid solid phase change (SSPC) chitosan-g-mPEG fiber with improved mechanical performance via in-situ wet spinning process.
    Bao D; Liu L; Sun T; Han Y; Meng F; Zhao M; Yu Y; Guo J; Zhang S
    Carbohydr Polym; 2020 Jul; 240():116313. PubMed ID: 32475578
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.