BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 35577193)

  • 1. Enhanced co-production of medium-chain-length polyhydroxyalkanoates and phenazines from crude glycerol by high cell density cultivation of Pseudomonas chlororaphis in membrane bioreactor.
    Aloui H; Khomlaem C; Torres CAV; Freitas F; Reis MAM; Kim BS
    Int J Biol Macromol; 2022 Jun; 211():545-555. PubMed ID: 35577193
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pseudomonas chlororaphis as a multiproduct platform: Conversion of glycerol into high-value biopolymers and phenazines.
    de Meneses L; Pereira JR; Sevrin C; Grandfils C; Paiva A; Reis MAM; Freitas F
    N Biotechnol; 2020 Mar; 55():84-90. PubMed ID: 31605767
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Demonstration of the adhesive properties of the medium-chain-length polyhydroxyalkanoate produced by Pseudomonas chlororaphis subsp. aurantiaca from glycerol.
    Pereira JR; Araújo D; Marques AC; Neves LA; Grandfils C; Sevrin C; Alves VD; Fortunato E; Reis MAM; Freitas F
    Int J Biol Macromol; 2019 Feb; 122():1144-1151. PubMed ID: 30219510
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biosynthesis and Characterization of Medium-Chain-Length Polyhydroxyalkanoate with an Enriched 3-Hydroxydodecanoate Monomer from a
    Li HL; Deng RX; Wang W; Liu KQ; Hu HB; Huang XQ; Zhang XH
    J Agric Food Chem; 2021 Apr; 69(13):3895-3903. PubMed ID: 33759523
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Production of medium-chain-length polyhydroxyalkanoates by Pseudomonas chlororaphis subsp. aurantiaca: Cultivation on fruit pulp waste and polymer characterization.
    Pereira JR; Araújo D; Freitas P; Marques AC; Alves VD; Sevrin C; Grandfils C; Fortunato E; Reis MAM; Freitas F
    Int J Biol Macromol; 2021 Jan; 167():85-92. PubMed ID: 33249156
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Production and characterization of medium-chain-length polyhydroxyalkanoate copolymer from Arctic psychrotrophic bacterium Pseudomonas sp. PAMC 28620.
    Sathiyanarayanan G; Bhatia SK; Song HS; Jeon JM; Kim J; Lee YK; Kim YG; Yang YH
    Int J Biol Macromol; 2017 Apr; 97():710-720. PubMed ID: 28108411
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High cell density culture of Paracoccus sp. LL1 in membrane bioreactor for enhanced co-production of polyhydroxyalkanoates and astaxanthin.
    Khomlaem C; Aloui H; Oh WG; Kim BS
    Int J Biol Macromol; 2021 Dec; 192():289-297. PubMed ID: 34619282
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Medium chain length polyhydroxyalkanoates consisting primarily of unsaturated 3-hydroxy-5-cis-dodecanoate synthesized by newly isolated bacteria using crude glycerol.
    Muangwong A; Boontip T; Pachimsawat J; Napathorn SC
    Microb Cell Fact; 2016 Mar; 15():55. PubMed ID: 26988857
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fed-Batch
    Borrero-de Acuña JM; Rohde M; Saldias C; Poblete-Castro I
    Front Bioeng Biotechnol; 2021; 9():642023. PubMed ID: 33796510
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Colonization and degradation of polyhydroxyalkanoates by lipase-producing bacteria.
    Sharma PK; Mohanan N; Sidhu R; Levin DB
    Can J Microbiol; 2019 Jun; 65(6):461-475. PubMed ID: 30897336
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering
    Deng RX; Li HL; Wang W; Hu HB; Zhang XH
    J Agric Food Chem; 2024 Apr; 72(15):8684-8692. PubMed ID: 38564621
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biosynthesis and characterization of poly(3-hydroxydodecanoate) by β-oxidation inhibited mutant of Pseudomonas entomophila L48.
    Chung AL; Jin HL; Huang LJ; Ye HM; Chen JC; Wu Q; Chen GQ
    Biomacromolecules; 2011 Oct; 12(10):3559-66. PubMed ID: 21838281
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of a mannitol rich ensiled grass press juice (EGPJ) as a sole carbon source for polyhydroxyalkanoates (PHAs) production through high cell density cultivation.
    Cerrone F; Davis R; Kenny ST; Woods T; O'Donovan A; Gupta VK; Tuohy M; Babu RP; O'Kiely P; O'Connor K
    Bioresour Technol; 2015 Sep; 191():45-52. PubMed ID: 25978856
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel description of mcl-PHA biosynthesis by Pseudomonas chlororaphis from animal-derived waste.
    Muhr A; Rechberger EM; Salerno A; Reiterer A; Malli K; Strohmeier K; Schober S; Mittelbach M; Koller M
    J Biotechnol; 2013 May; 165(1):45-51. PubMed ID: 23467001
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of medium-chain-length polyhydroxyalkanoate production by Pseudomonas putida LS46 using biodiesel by-product streams.
    Fu J; Sharma U; Sparling R; Cicek N; Levin DB
    Can J Microbiol; 2014 Jul; 60(7):461-8. PubMed ID: 24983445
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carbon flux to growth or polyhydroxyalkanoate synthesis under microaerophilic conditions is affected by fatty acid chain-length in Pseudomonas putida LS46.
    Blunt W; Dartiailh C; Sparling R; Gapes D; Levin DB; Cicek N
    Appl Microbiol Biotechnol; 2018 Aug; 102(15):6437-6449. PubMed ID: 29799090
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conversion of waste cooking oil into medium chain polyhydroxyalkanoates in a high cell density fermentation.
    Ruiz C; Kenny ST; Narancic T; Babu R; Connor KO
    J Biotechnol; 2019 Dec; 306():9-15. PubMed ID: 31476332
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Production of medium-chain-length polyhydroxyalkanoates by sequential feeding of xylose and octanoic acid in engineered Pseudomonas putida KT2440.
    Le Meur S; Zinn M; Egli T; Thöny-Meyer L; Ren Q
    BMC Biotechnol; 2012 Aug; 12():53. PubMed ID: 22913372
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simultaneous biosynthesis of two copolymers in Pseudomonas putida GPo1 using a two-stage continuous culture system.
    Hartmann R; Hany R; Witholt B; Zinn M
    Biomacromolecules; 2010 Jun; 11(6):1488-93. PubMed ID: 20459087
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of polyhydroxyalkanoates (PHAs) from vegetable oils and free fatty acids by wild-type and mutant strains of Pseudomonas chlororaphis.
    Sharma PK; Munir RI; de Kievit T; Levin DB
    Can J Microbiol; 2017 Dec; 63(12):1009-1024. PubMed ID: 28982015
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.